

LLM

[image: PyPI] [https://pypi.org/project/llm/]
[image: Changelog] [https://llm.datasette.io/en/stable/changelog.html]
[image: Tests] [https://github.com/simonw/llm/actions?query=workflow%3ATest]
[image: License] [https://github.com/simonw/llm/blob/main/LICENSE]
[image: Discord] [https://datasette.io/discord-llm]
[image: Homebrew] [https://formulae.brew.sh/formula/llm]

A CLI utility and Python library for interacting with Large Language Models, both via remote APIs and models that can be installed and run on your own machine.

Run prompts from the command-line, store the results in SQLite, generate embeddings and more.

Consult the LLM plugins directory for plugins that provide access to remote and local models.

Background on this project:

	llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs [https://simonwillison.net/2023/May/18/cli-tools-for-llms/]

	The LLM CLI tool now supports self-hosted language models via plugins [https://simonwillison.net/2023/Jul/12/llm/]

	Accessing Llama 2 from the command-line with the llm-replicate plugin [https://simonwillison.net/2023/Jul/18/accessing-llama-2/]

	Run Llama 2 on your own Mac using LLM and Homebrew [https://simonwillison.net/2023/Aug/1/llama-2-mac/]

	Catching up on the weird world of LLMs [https://simonwillison.net/2023/Aug/3/weird-world-of-llms/]

	LLM now provides tools for working with embeddings [https://simonwillison.net/2023/Sep/4/llm-embeddings/]

	Build an image search engine with llm-clip, chat with models with llm chat [https://simonwillison.net/2023/Sep/12/llm-clip-and-chat/]

	Many options for running Mistral models in your terminal using LLM [https://simonwillison.net/2023/Dec/18/mistral/]

For more check out the llm tag [https://simonwillison.net/tags/llm/] on my blog.

Quick start

First, install LLM using pip or Homebrew or pipx:

pip install llm

Or with Homebrew (see warning note):

brew install llm

Or with pipx [https://pypa.github.io/pipx/]:

pipx install llm

If you have an OpenAI API key [https://platform.openai.com/api-keys] key you can run this:

Paste your OpenAI API key into this
llm keys set openai

Run a prompt
llm "Ten fun names for a pet pelican"

Run a system prompt against a file
cat myfile.py | llm -s "Explain this code"

Or you can install a plugin and use models that can run on your local device:

Install the plugin
llm install llm-gpt4all

Download and run a prompt against the Orca Mini 7B model
llm -m orca-mini-3b-gguf2-q4_0 'What is the capital of France?'

To start an interactive chat with a model, use llm chat:

llm chat -m chatgpt

Chatting with gpt-3.5-turbo
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> Tell me a joke about a pelican
Why don't pelicans like to tip waiters?

Because they always have a big bill!
>

Contents

	Setup
	Installation

	Upgrading to the latest version

	A note about Homebrew and PyTorch

	Installing plugins

	API key management
	Saving and using stored keys

	Passing keys using the –key option

	Keys in environment variables

	Configuration
	Setting a custom default model

	Setting a custom directory location

	Turning SQLite logging on and off

	Usage
	Executing a prompt

	Completion prompts

	Continuing a conversation

	Using with a shell

	System prompts

	Starting an interactive chat

	Listing available models

	OpenAI models
	Configuration

	OpenAI language models

	OpenAI embedding models

	Adding more OpenAI models

	Other models
	Installing and using a local model

	OpenAI-compatible models
	Extra HTTP headers

	Embeddings
	Embedding with the CLI
	llm embed

	llm embed-multi

	llm similar

	llm embed-models

	llm collections list

	llm collections delete

	Using embeddings from Python
	Working with collections

	Retrieving similar items

	SQL schema

	Writing plugins to add new embedding models
	Embedding binary content

	Embedding storage format

	Plugins
	Installing plugins
	Listing installed plugins

	Running with a subset of plugins

	Plugin directory
	Local models

	Remote APIs

	Embedding models

	Extra commands

	Just for fun

	Plugin hooks
	register_commands(cli)

	register_models(register)

	Writing a plugin to support a new model
	The initial structure of the plugin

	Installing your plugin to try it out

	Building the Markov chain

	Executing the Markov chain

	Adding that to the plugin

	Understanding execute()

	Prompts and responses are logged to the database

	Adding options

	Distributing your plugin

	GitHub repositories

	Publishing plugins to PyPI

	Adding metadata

	What to do if it breaks

	Utility functions for plugins
	llm.user_dir()

	llm.ModelError

	Response.fake()

	Model aliases
	Listing aliases

	Adding a new alias

	Removing an alias

	Viewing the aliases file

	Python API
	Basic prompt execution
	System prompts

	Model options

	Models from plugins

	Streaming responses

	Conversations

	Other functions
	set_alias(alias, model_id)

	remove_alias(alias)

	Prompt templates
	Getting started

	Using a template

	Listing available templates

	Templates as YAML files

	System templates

	Additional template variables

	Specifying default parameters

	Setting a default model for a template

	Logging to SQLite
	Viewing the logs
	Logs for a conversation

	Searching the logs

	Filtering by model

	Browsing logs using Datasette

	SQL schema

	Related tools
	strip-tags

	ttok

	Symbex

	CLI reference
	llm –help
	llm prompt –help

	llm chat –help

	llm keys –help

	llm logs –help

	llm models –help

	llm templates –help

	llm aliases –help

	llm plugins –help

	llm install –help

	llm uninstall –help

	llm embed –help

	llm embed-multi –help

	llm similar –help

	llm embed-models –help

	llm collections –help

	llm openai –help

	Contributing
	Debugging tricks

	Documentation

	Release process

	Changelog
	0.13.1 (2024-01-26)

	0.13 (2024-01-26)

	0.12 (2023-11-06)

	0.11.2 (2023-11-06)

	0.11.1 (2023-10-31)

	0.11 (2023-09-18)

	0.10 (2023-09-12)
	llm chat

	Binary embedding support

	Also in this release

	0.10a1 (2023-09-11)

	0.10a0 (2023-09-04)

	0.9 (2023-09-03)

	0.8.1 (2023-08-31)

	0.8 (2023-08-20)

	0.7.1 (2023-08-19)

	0.7 (2023-08-12)
	Notable new plugins

	Also in this release

	0.6.1 (2023-07-24)

	0.6 (2023-07-18)

	0.5 (2023-07-12)
	New features

	Smaller improvements

	0.4.1 (2023-06-17)

	0.4 (2023-06-17)
	Prompt templates

	Continue previous chat

	New mechanism for storing API keys

	New location for the logs.db database

	Other changes

	0.3 (2023-05-17)

	0.2 (2023-04-01)

	0.1 (2023-04-01)

Setup

Installation

Install this tool using pip:

pip install llm

Or using pipx [https://pypa.github.io/pipx/]:

pipx install llm

Or using Homebrew [https://brew.sh/] (see warning note):

brew install llm

Upgrading to the latest version

If you installed using pip:

pip install -U llm

For pipx:

pipx upgrade llm

For Homebrew:

brew upgrade llm

If the latest version is not yet available on Homebrew you can upgrade like this instead:

llm install -U llm

A note about Homebrew and PyTorch

The version of LLM packaged for Homebrew currently uses Python 3.12. The PyTorch project do not yet have a stable release of PyTorch for that version of Python.

This means that LLM plugins that depend on PyTorch such as llm-sentence-transformers [https://github.com/simonw/llm-sentence-transformers] may not install cleanly with the Homebrew version of LLM.

You can workaround this by manually installing PyTorch before installing llm-sentence-transformers:

llm install llm-python
llm python -m pip install \
 --pre torch torchvision \
 --index-url https://download.pytorch.org/whl/nightly/cpu
llm install llm-sentence-transformers

This should produce a working installation of that plugin.

Installing plugins

Plugins can be used to add support for other language models, including models that can run on your own device.

For example, the llm-gpt4all [https://github.com/simonw/llm-gpt4all] plugin adds support for 17 new models that can be installed on your own machine. You can install that like so:

llm install llm-gpt4all

API key management

Many LLM models require an API key. These API keys can be provided to this tool using several different mechanisms.

You can obtain an API key for OpenAI’s language models from the API keys page [https://platform.openai.com/api-keys] on their site.

Saving and using stored keys

The easiest way to store an API key is to use the llm keys set command:

llm keys set openai

You will be prompted to enter the key like this:

% llm keys set openai
Enter key:

Once stored, this key will be automatically used for subsequent calls to the API:

llm "Five ludicrous names for a pet lobster"

You can list the names of keys that have been set using this command:

llm keys

Keys that are stored in this way live in a file called keys.json. This file is located at the path shown when you run the following command:

llm keys path

On macOS this will be ~/Library/Application Support/io.datasette.llm/keys.json. On Linux it may be something like ~/.config/io.datasette.llm/keys.json.

Passing keys using the –key option

Keys can be passed directly using the --key option, like this:

llm "Five names for pet weasels" --key sk-my-key-goes-here

You can also pass the alias of a key stored in the keys.json file. For example, if you want to maintain a personal API key you could add that like this:

llm keys set personal

And then use it for prompts like so:

llm "Five friendly names for a pet skunk" --key personal

Keys in environment variables

Keys can also be set using an environment variable. These are different for different models.

For OpenAI models the key will be read from the OPENAI_API_KEY environment variable.

The environment variable will be used if no --key option is passed to the command and there is not a key configured in keys.json

To use an environment variable in place of the keys.json key run the prompt like this:

llm 'my prompt' --key $OPENAI_API_KEY

Configuration

You can configure LLM in a number of different ways.

Setting a custom default model

The model used when calling llm without the -m/--model option defaults to gpt-3.5-turbo - the fastest and least expensive OpenAI model, and the same model family that powers ChatGPT.

You can use the llm models default command to set a different default model. For GPT-4 (slower and more expensive, but more capable) run this:

llm models default gpt-4

You can view the current model by running this:

llm models default

Any of the supported aliases for a model can be passed to this command.

Setting a custom directory location

This tool stores various files - prompt templates, stored keys, preferences, a database of logs - in a directory on your computer.

On macOS this is ~/Library/Application Support/io.datasette.llm/.

On Linux it may be something like ~/.config/io.datasette.llm/.

You can set a custom location for this directory by setting the LLM_USER_PATH environment variable:

export LLM_USER_PATH=/path/to/my/custom/directory

Turning SQLite logging on and off

By default, LLM will log every prompt and response you make to a SQLite database - see Logging to SQLite for more details.

You can turn this behavior off by default by running:

llm logs off

Or turn it back on again with:

llm logs on

Run llm logs status to see the current states of the setting.

Usage

The command to run a prompt is llm prompt 'your prompt'. This is the default command, so you can use llm 'your prompt' as a shortcut.

Executing a prompt

These examples use the default OpenAI gpt-3.5-turbo model, which requires you to first set an OpenAI API key.

You can install LLM plugins to use models from other providers, including openly licensed models you can run directly on your own computer.

To run a prompt, streaming tokens as they come in:

llm 'Ten names for cheesecakes'

To disable streaming and only return the response once it has completed:

llm 'Ten names for cheesecakes' --no-stream

To switch from ChatGPT 3.5 (the default) to GPT-4 Turbo:

llm 'Ten names for cheesecakes' -m gpt-4-turbo

You can use -m 4t as an even shorter shortcut.

Pass --model <model name> to use a different model. Run llm models to see a list of available models.

You can also send a prompt to standard input, for example:

echo 'Ten names for cheesecakes' | llm

If you send text to standard input and provide arguments, the resulting prompt will consist of the piped content followed by the arguments:

cat myscript.py | llm 'explain this code'

Will run a prompt of:

<contents of myscript.py> explain this code

For models that support them, system prompts are a better tool for this kind of prompting.

Some models support options. You can pass these using -o/--option name value - for example, to set the temperature to 1.5 run this:

llm 'Ten names for cheesecakes' -o temperature 1.5

Completion prompts

Some models are completion models - rather than being tuned to respond to chat style prompts, they are designed to complete a sentence or paragraph.

An example of this is the gpt-3.5-turbo-instruct OpenAI model.

You can prompt that model the same way as the chat models, but be aware that the prompt format that works best is likely to differ.

llm -m gpt-3.5-turbo-instruct 'Reasons to tame a wild beaver:'

Continuing a conversation

By default, the tool will start a new conversation each time you run it.

You can opt to continue the previous conversation by passing the -c/--continue option:

llm 'More names' -c

This will re-send the prompts and responses for the previous conversation as part of the call to the language model. Note that this can add up quickly in terms of tokens, especially if you are using expensive models.

--continue will automatically use the same model as the conversation that you are continuing, even if you omit the -m/--model option.

To continue a conversation that is not the most recent one, use the --cid/--conversation <id> option:

llm 'More names' --cid 01h53zma5txeby33t1kbe3xk8q

You can find these conversation IDs using the llm logs command.

Using with a shell

To learn more about your computer’s operating system based on the output of uname -a, run this:

llm "Tell me about my operating system: $(uname -a)"

This pattern of using $(command) inside a double quoted string is a useful way to quickly assemble prompts.

System prompts

You can use -s/--system '...' to set a system prompt.

llm 'SQL to calculate total sales by month' \
 --system 'You are an exaggerated sentient cheesecake that knows SQL and talks about cheesecake a lot'

This is useful for piping content to standard input, for example:

curl -s 'https://simonwillison.net/2023/May/15/per-interpreter-gils/' | \
 llm -s 'Suggest topics for this post as a JSON array'

Or to generate a description of changes made to a Git repository since the last commit:

git diff | llm -s 'Describe these changes'

Different models support system prompts in different ways.

The OpenAI models are particularly good at using system prompts as instructions for how they should process additional input sent as part of the regular prompt.

Other models might use system prompts change the default voice and attitude of the model.

System prompts can be saved as templates to create reusable tools. For example, you can create a template called pytest like this:

llm -s 'write pytest tests for this code' --save pytest

And then use the new template like this:

cat llm/utils.py | llm -t pytest

See prompt templates for more.

Starting an interactive chat

The llm chat command starts an ongoing interactive chat with a model.

This is particularly useful for models that run on your own machine, since it saves them from having to be loaded into memory each time a new prompt is added to a conversation.

Run llm chat, optionally with a -m model_id, to start a chat conversation:

llm chat -m chatgpt

Each chat starts a new conversation. A record of each conversation can be accessed through the logs.

You can pass -c to start a conversation as a continuation of your most recent prompt. This will automatically use the most recently used model:

llm chat -c

For models that support them, you can pass options using -o/--option:

llm chat -m gpt-4 -o temperature 0.5

You can pass a system prompt to be used for your chat conversation:

llm chat -m gpt-4 -s 'You are a sentient cheesecake'

You can also pass a template - useful for creating chat personas that you wish to return to.

Here’s how to create a template for your GPT-4 powered cheesecake:

llm --system 'You are a sentient cheesecake' -m gpt-4 --save cheesecake

Now you can start a new chat with your cheesecake any time you like using this:

llm chat -t cheesecake

Chatting with gpt-4
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> who are you?
I am a sentient cheesecake, meaning I am an artificial
intelligence embodied in a dessert form, specifically a
cheesecake. However, I don't consume or prepare foods
like humans do, I communicate, learn and help answer
your queries.

Type quit or exit followed by <enter> to end a chat session.

Sometimes you may want to paste multiple lines of text into a chat at once - for example when debugging an error message.

To do that, type !multi to start a multi-line input. Type or paste your text, then type !end and hit <enter> to finish.

If your pasted text might itself contain a !end line, you can set a custom delimiter using !multi abc followed by !end abc at the end:

Chatting with gpt-4
Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> !multi custom-end
 Explain this error:

 File "/opt/homebrew/Caskroom/miniconda/base/lib/python3.10/urllib/request.py", line 1391, in https_open
 return self.do_open(http.client.HTTPSConnection, req,
 File "/opt/homebrew/Caskroom/miniconda/base/lib/python3.10/urllib/request.py", line 1351, in do_open
 raise URLError(err)
urllib.error.URLError: <urlopen error [Errno 8] nodename nor servname provided, or not known>

 !end custom-end

Listing available models

The llm models command lists every model that can be used with LLM, along with their aliases. This includes models that have been installed using plugins.

llm models

Example output:

OpenAI Chat: gpt-3.5-turbo (aliases: 3.5, chatgpt)
OpenAI Chat: gpt-3.5-turbo-16k (aliases: chatgpt-16k, 3.5-16k)
OpenAI Chat: gpt-4 (aliases: 4, gpt4)
OpenAI Chat: gpt-4-32k (aliases: 4-32k)
PaLM 2: chat-bison-001 (aliases: palm, palm2)

Add --options to also see documentation for the options supported by each model:

llm models --options

Output:

 OpenAI models

OpenAI models

LLM ships with a default plugin for talking to OpenAI’s API. OpenAI offer both language models and embedding models, and LLM can access both types.

Configuration

All OpenAI models are accessed using an API key. You can obtain one from the API keys page [https://platform.openai.com/api-keys] on their site.

Once you have created a key, configure LLM to use it by running:

llm keys set openai

Then paste in the API key.

OpenAI language models

Run llm models for a full list of available models. The OpenAI models supported by LLM are:

OpenAI Chat: gpt-3.5-turbo (aliases: 3.5, chatgpt)
OpenAI Chat: gpt-3.5-turbo-16k (aliases: chatgpt-16k, 3.5-16k, turbo)
OpenAI Chat: gpt-4 (aliases: 4, gpt4)
OpenAI Chat: gpt-4-32k (aliases: 4-32k)
OpenAI Chat: gpt-4-1106-preview
OpenAI Chat: gpt-4-0125-preview
OpenAI Chat: gpt-4-turbo-preview (aliases: gpt-4-turbo, 4-turbo, 4t)
OpenAI Completion: gpt-3.5-turbo-instruct (aliases: 3.5-instruct, chatgpt-instruct, instruct)

See the OpenAI models documentation [https://platform.openai.com/docs/models] for details of each of these.

The best balance of price and capacity are the -turbo models. gpt-3.5-turbo (aliased to 3.5) is the least expensive. gpt-4-turbo-preview (aliased to 4t) is the cheapest of the GPT-4 models.

The gpt-3.5-turbo-instruct model is a little different - it is a completion model rather than a chat model, described in the OpenAI completions documentation [https://platform.openai.com/docs/api-reference/completions/create].

Completion models can be called with the -o logprobs 3 option (not supported by chat models) which will cause LLM to store 3 log probabilities for each returned token in the SQLite database. Consult this issue [https://github.com/simonw/llm/issues/284#issuecomment-1724772704] for details on how to read these values.

OpenAI embedding models

Run llm embed-models for a list of embedding models. The following OpenAI embedding models are supported by LLM:

ada-002 (aliases: ada, oai)
3-small
3-large
3-small-512
3-large-256
3-large-1024

The 3-small model is currently the most inexpensive. 3-large costs more but is more capable - see New embedding models and API updates [https://openai.com/blog/new-embedding-models-and-api-updates] on the OpenAI blog for details and benchmarks.

An important characteristic of any embedding model is the size of the vector it returns. Smaller vectors cost less to store and query, but may be less accurate.

OpenAI 3-small and 3-large vectors can be safely truncated to lower dimensions without losing too much accuracy. The -int models provided by LLM are pre-configured to do this, so 3-large-256 is the 3-large model truncated to 256 dimensions.

The vector size of the supported OpenAI embedding models are as follows:

	Model

	Size

	ada-002

	1536

	3-small

	1536

	3-large

	3072

	3-small-512

	512

	3-large-256

	256

	3-large-1024

	1024

Adding more OpenAI models

OpenAI occasionally release new models with new names. LLM aims to ship new releases to support these, but you can also configure them directly, by adding them to a extra-openai-models.yaml configuration file.

Run this command to find the directory in which this file should be created:

dirname "$(llm logs path)"

On my Mac laptop I get this:

~/Library/Application Support/io.datasette.llm

Create a file in that directory called extra-openai-models.yaml.

Let’s say OpenAI have just released the gpt-3.5-turbo-0613 model and you want to use it, despite LLM not yet shipping support. You could configure that by adding this to the file:

- model_id: gpt-3.5-turbo-0613
 aliases: ["0613"]

The model_id is the identifier that will be recorded in the LLM logs. You can use this to specify the model, or you can optionally include a list of aliases for that model.

If the model is a completion model (such as gpt-3.5-turbo-instruct) add completion: true to the configuration.

With this configuration in place, the following command should run a prompt against the new model:

llm -m 0613 'What is the capital of France?'

Run llm models to confirm that the new model is now available:

llm models

Example output:

OpenAI Chat: gpt-3.5-turbo (aliases: 3.5, chatgpt)
OpenAI Chat: gpt-3.5-turbo-16k (aliases: chatgpt-16k, 3.5-16k)
OpenAI Chat: gpt-4 (aliases: 4, gpt4)
OpenAI Chat: gpt-4-32k (aliases: 4-32k)
OpenAI Chat: gpt-3.5-turbo-0613 (aliases: 0613)

Running llm logs -n 1 should confirm that the prompt and response has been correctly logged to the database.

 Other models

Other models

LLM supports OpenAI models by default. You can install plugins to add support for other models. You can also add additional OpenAI-API-compatible models using a configuration file.

Installing and using a local model

LLM plugins can provide local models that run on your machine.

To install llm-gpt4all [https://github.com/simonw/llm-gpt4all], providing 17 models from the GPT4All [https://gpt4all.io/] project, run this:

llm install llm-gpt4all

Run llm models to see the expanded list of available models.

To run a prompt through one of the models from GPT4All specify it using -m/--model:

llm -m orca-mini-3b-gguf2-q4_0 'What is the capital of France?'

The model will be downloaded and cached the first time you use it.

Check the plugin directory for the latest list of available plugins for other models.

OpenAI-compatible models

Projects such as LocalAI [https://localai.io/] offer a REST API that imitates the OpenAI API but can be used to run other models, including models that can be installed on your own machine. These can be added using the same configuration mechanism.

The model_id is the name LLM will use for the model. The model_name is the name which needs to be passed to the API - this might differ from the model_id, especially if the model_id could potentially clash with other installed models.

The api_base key can be used to point the OpenAI client library at a different API endpoint.

To add the orca-mini-3b model hosted by a local installation of LocalAI [https://localai.io/], add this to your extra-openai-models.yaml file:

- model_id: orca-openai-compat
 model_name: orca-mini-3b.ggmlv3
 api_base: "http://localhost:8080"

If the api_base is set, the existing configured openai API key will not be sent by default.

You can set api_key_name to the name of a key stored using the API key management feature.

Add completion: true if the model is a completion model that uses a /completion as opposed to a /completion/chat endpoint.

Having configured the model like this, run llm models to check that it installed correctly. You can then run prompts against it like so:

llm -m orca-openai-compat 'What is the capital of France?'

And confirm they were logged correctly with:

llm logs -n 1

Extra HTTP headers

Some providers such as openrouter.ai [https://openrouter.ai/docs] may require the setting of additional HTTP headers. You can set those using the headers: key like this:

- model_id: claude
 model_name: anthropic/claude-2
 api_base: "https://openrouter.ai/api/v1"
 api_key_name: openrouter
 headers:
 HTTP-Referer: "https://llm.datasette.io/"
 X-Title: LLM

 Embeddings

Embeddings

Embedding models allow you to take a piece of text - a word, sentence, paragraph or even a whole article, and convert that into an array of floating point numbers.

This floating point array is called an “embedding vector”, and works as a numerical representation of the semantic meaning of the content in a many-multi-dimensional space.

By calculating the distance between embedding vectors, we can identify which content is semantically “nearest” to other content.

This can be used to build features like related article lookups. It can also be used to build semantic search, where a user can search for a phrase and get back results that are semantically similar to that phrase even if they do not share any exact keywords.

Some embedding models like CLIP [https://github.com/simonw/llm-clip] can even work against binary files such as images. These can be used to search for images that are similar to other images, or to search for images that are semantically similar to a piece of text.

LLM supports multiple embedding models through plugins. Once installed, an embedding model can be used on the command-line or via the Python API to calculate and store embeddings for content, and then to perform similarity searches against those embeddings.

See LLM now provides tools for working with embeddings [https://simonwillison.net/2023/Sep/4/llm-embeddings/] for an extended explanation of embeddings, why they are useful and what you can do with them.

	Embedding with the CLI
	llm embed
	Returning embeddings to the terminal

	Storing embeddings in SQLite

	llm embed-multi
	Embedding data from a CSV, TSV or JSON file

	Embedding data from a SQLite database

	Embedding data from files in directories

	llm similar

	llm embed-models
	llm embed-models default

	llm collections list

	llm collections delete

	Using embeddings from Python
	Working with collections
	Storing embeddings in bulk

	Collection class reference

	Retrieving similar items

	SQL schema

	Writing plugins to add new embedding models
	Embedding binary content

	Embedding storage format

 Embedding with the CLI

Embedding with the CLI

LLM provides command-line utilities for calculating and storing embeddings for pieces of content.

llm embed

The llm embed command can be used to calculate embedding vectors for a string of content. These can be returned directly to the terminal, stored in a SQLite database, or both.

Returning embeddings to the terminal

The simplest way to use this command is to pass content to it using the -c/--content option, like this:

llm embed -c 'This is some content' -m 3-small

-m 3-small specifies the OpenAI text-embedding-3-small model. You will need to have set an OpenAI API key using llm keys set openai for this to work.

You can install plugins to access other models. The llm-sentence-transformers [https://github.com/simonw/llm-sentence-transformers] plugin can be used to run models on your own laptop, such as the MiniLM-L6 [https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2] model:

llm install llm-sentence-transformers
llm embed -c 'This is some content' -m sentence-transformers/all-MiniLM-L6-v2

The llm embed command returns a JSON array of floating point numbers directly to the terminal:

[0.123, 0.456, 0.789...]

You can omit the -m/--model option if you set a default embedding model.

LLM also offers a binary storage format for embeddings, described in embeddings storage format.

You can output embeddings using that format as raw bytes using --format blob, or in hexadecimal using --format hex, or in Base64 using --format base64:

llm embed -c 'This is some content' -m 3-small --format base64

This outputs:

8NGzPFtdgTqHcZw7aUT6u+++WrwwpZo8XbSxv...

Some models such as llm-clip [https://github.com/simonw/llm-clip] can run against binary data. You can pass in binary data using the -i and --binary options:

llm embed --binary -m clip -i image.jpg

Or from standard input like this:

cat image.jpg | llm embed --binary -m clip -i -

Storing embeddings in SQLite

Embeddings are much more useful if you store them somewhere, so you can calculate similarity scores between different embeddings later on.

LLM includes the concept of a collection of embeddings. A collection groups together a set of stored embeddings created using the same model, each with a unique ID within that collection.

Embeddings also store a hash of the content that was embedded. This hash is later used to avoid calculating duplicate embeddings for the same content.

First, we’ll set a default model so we don’t have to keep repeating it:

llm embed-models default 3-small

The llm embed command can store results directly in a named collection like this:

llm embed quotations philkarlton-1 -c \
 'There are only two hard things in Computer Science: cache invalidation and naming things'

This stores the given text in the quotations collection under the key philkarlton-1.

You can also pipe content to standard input, like this:

cat one.txt | llm embed files one

This will store the embedding for the contents of one.txt in the files collection under the key one.

A collection will be created the first time you mention it.

Collections have a fixed embedding model, which is the model that was used for the first embedding stored in that collection.

In the above example this would have been the default embedding model at the time that the command was run.

The following example stores the embedding for the string “my happy hound” in a collection called phrases under the key hound and using the model 3-small:

llm embed phrases hound -m 3-small -c 'my happy hound'

By default, the SQLite database used to store embeddings is the embeddings.db in the user content directory managed by LLM.

You can see the path to this directory by running llm collections path.

You can store embeddings in a different SQLite database by passing a path to it using the -d/--database option to llm embed. If this file does not exist yet the command will create it:

llm embed phrases hound -d my-embeddings.db -c 'my happy hound'

This creates a database file called my-embeddings.db in the current directory.

Storing content and metadata

By default, only the entry ID and the embedding vector are stored in the database table.

You can store a copy of the original text in the content column by passing the --store option:

llm embed phrases hound -c 'my happy hound' --store

You can also store a JSON object containing arbitrary metadata in the metadata column by passing the --metadata option. This example uses both --store and --metadata options:

llm embed phrases hound \
 -m 3-small \
 -c 'my happy hound' \
 --metadata '{"name": "Hound"}' \
 --store

Data stored in this way will be returned by calls to llm similar, for example:

llm similar phrases -c 'hound'

{"id": "hound", "score": 0.8484683588631485, "content": "my happy hound", "metadata": {"name": "Hound"}}

llm embed-multi

The llm embed command embeds a single string at a time.

llm embed-multi can be used to embed multiple strings at once, taking advantage of any efficiencies that the embedding model may provide when processing multiple strings.

This command can be called in one of three ways:

	With a CSV, TSV, JSON or newline-delimited JSON file

	With a SQLite database and a SQL query

	With one or more paths to directories, each accompanied by a glob pattern

All three mechanisms support these options:

	-m model_id to specify the embedding model to use

	-d database.db to specify a different database file to store the embeddings in

	--store to store the original content in the embeddings table in addition to the embedding vector

	--prefix to prepend a prefix to the stored ID of each item

	--batch-size SIZE to process embeddings in batches of the specified size

Embedding data from a CSV, TSV or JSON file

You can embed data from a CSV, TSV or JSON file by passing that file to the command as the second option, after the collection name.

Your file must contain at least two columns. The first one is expected to contain the ID of the item, and any subsequent columns will be treated as containing content to be embedded.

An example CSV file might look like this:

id,content
one,This is the first item
two,This is the second item

TSV would use tabs instead of commas.

JSON files can be structured like this:

[
 {"id": "one", "content": "This is the first item"},
 {"id": "two", "content": "This is the second item"}
]

Or as newline-delimited JSON like this:

{"id": "one", "content": "This is the first item"}
{"id": "two", "content": "This is the second item"}

In each of these cases the file can be passed to llm embed-multi like this:

llm embed-multi items mydata.csv

The first argument is the name of the collection, the second is the filename.

You can also pipe content to standard input of the tool using -:

cat mydata.json | llm embed-multi items -

LLM will attempt to detect the format of your data automatically. If this doesn’t work you can specify the format using the --format option. This is required if you are piping newline-delimited JSON to standard input.

cat mydata.json | llm embed-multi items - --format nl

Other supported --format options are csv, tsv and json.

This example embeds the data from a JSON file in a collection called items in database called docs.db using the 3-small model and stores the original content in the embeddings table as well, adding a prefix of my-items/ to each ID:

llm embed-multi items mydata.json \
 -d docs.db \
 -m 3-small \
 --prefix my-items/ \
 --store

Embedding data from a SQLite database

You can embed data from a SQLite database using --sql, optionally combined with --attach to attach an additional database.

If you are storing embeddings in the same database as the source data, you can do this:

llm embed-multi docs \
 -d docs.db \
 --sql 'select id, title, content from documents' \
 -m 3-small

The docs.db database here contains a documents table, and we want to embed the title and content columns from that table and store the results back in the same database.

To load content from a database other than the one you are using to store embeddings, attach it with the --attach option and use alias.table in your SQLite query:

llm embed-multi docs \
 -d embeddings.db \
 --attach other other.db \
 --sql 'select id, title, content from other.documents' \
 -m 3-small

Embedding data from files in directories

LLM can embed the content of every text file in a specified directory, using the file’s path and name as the ID.

Consider a directory structure like this:

docs/aliases.md
docs/contributing.md
docs/embeddings/binary.md
docs/embeddings/cli.md
docs/embeddings/index.md
docs/index.md
docs/logging.md
docs/plugins/directory.md
docs/plugins/index.md

To embed all of those documents, you can run the following:

llm embed-multi documentation \
 -m 3-small \
 --files docs '**/*.md' \
 -d documentation.db \
 --store

Here --files docs '**/*.md' specifies that the docs directory should be scanned for files matching the **/*.md glob pattern - which will match Markdown files in any nested directory.

The result of the above command is a embeddings table with the following IDs:

aliases.md
contributing.md
embeddings/binary.md
embeddings/cli.md
embeddings/index.md
index.md
logging.md
plugins/directory.md
plugins/index.md

Each corresponding to embedded content for the file in question.

The --prefix option can be used to add a prefix to each ID:

llm embed-multi documentation \
 -m 3-small \
 --files docs '**/*.md' \
 -d documentation.db \
 --store \
 --prefix llm-docs/

This will result in the following IDs instead:

llm-docs/aliases.md
llm-docs/contributing.md
llm-docs/embeddings/binary.md
llm-docs/embeddings/cli.md
llm-docs/embeddings/index.md
llm-docs/index.md
llm-docs/logging.md
llm-docs/plugins/directory.md
llm-docs/plugins/index.md

Files are assumed to be utf-8, but LLM will fall back to latin-1 if it encounters an encoding error. You can specify a different set of encodings using the --encoding option.

This example will try utf-16 first and then mac_roman before falling back to latin-1:

llm embed-multi documentation \
 -m 3-small \
 --files docs '**/*.md' \
 -d documentation.db \
 --encoding utf-16 \
 --encoding mac_roman \
 --encoding latin-1

If a file cannot be read it will be logged to standard error but the script will keep on running.

If you are embedding binary content such as images for use with CLIP, add the --binary option:

llm embed-multi photos \
 -m clip \
 --files photos/ '*.jpeg' --binary

llm similar

The llm similar command searches a collection of embeddings for the items that are most similar to a given or item ID.

This currently uses a slow brute-force approach which does not scale well to large collections. See issue 216 [https://github.com/simonw/llm/issues/216] for plans to add a more scalable approach via vector indexes provided by plugins.

To search the quotations collection for items that are semantically similar to 'computer science':

llm similar quotations -c 'computer science'

This embeds the provided string and returns a newline-delimited list of JSON objects like this:

{"id": "philkarlton-1", "score": 0.8323904531677017, "content": null, "metadata": null}

You can compare against text stored in a file using -i filename:

llm similar quotations -i one.txt

Or feed text to standard input using -i -:

echo 'computer science' | llm similar quotations -i -

When using a model like CLIP, you can find images similar to an input image using -i filename with --binary:

llm similar photos -i image.jpg --binary

llm embed-models

To list all available embedding models, including those provided by plugins, run this command:

llm embed-models

The output should look something like this:

3-small (aliases: ada)
sentence-transformers/all-MiniLM-L6-v2 (aliases: all-MiniLM-L6-v2)

llm embed-models default

This command can be used to get and set the default embedding model.

This will return the name of the current default model:

llm embed-models default

You can set a different default like this:

llm embed-models default 3-small

This will set the default model to OpenAI’s 3-small model.

Any of the supported aliases for a model can be passed to this command.

You can unset the default model using --remove-default:

llm embed-models default --remove-default

When no default model is set, the llm embed and llm embed-multi commands will require that a model is specified using -m/--model.

llm collections list

To list all of the collections in the embeddings database, run this command:

llm collections list

Add --json for JSON output:

llm collections list --json

Add -d/--database to specify a different database file:

llm collections list -d my-embeddings.db

llm collections delete

To delete a collection from the database, run this:

llm collections delete collection-name

Pass -d to specify a different database file:

llm collections delete collection-name -d my-embeddings.db

 Using embeddings from Python

Using embeddings from Python

You can load an embedding model using its model ID or alias like this:

import llm

embedding_model = llm.get_embedding_model("ada-002")

To embed a string, returning a Python list of floating point numbers, use the .embed() method:

vector = embedding_model.embed("my happy hound")

If the embedding model can handle binary input, you can call .embed() with a byte string instead. You can check the supports_binary property to see if this is supported:

if embedding_model.supports_binary:
 vector = embedding_model.embed(open("my-image.jpg", "rb").read())

The embedding_model.supports_text property indicates if the model supports text input.

Many embeddings models are more efficient when you embed multiple strings or binary strings at once. To embed multiple strings at once, use the .embed_multi() method:

vectors = list(embedding_model.embed_multi(["my happy hound", "my dissatisfied cat"]))

This returns a generator that yields one embedding vector per string.

Embeddings are calculated in batches. By default all items will be processed in a single batch, unless the underlying embedding model has defined its own preferred batch size. You can pass a custom batch size using batch_size=N, for example:

vectors = list(embedding_model.embed_multi(lines_from_file, batch_size=20))

Working with collections

The llm.Collection class can be used to work with collections of embeddings from Python code.

A collection is a named group of embedding vectors, each stored along with their IDs in a SQLite database table.

To work with embeddings in this way you will need an instance of a sqlite-utils Database [https://sqlite-utils.datasette.io/en/stable/python-api.html#connecting-to-or-creating-a-database] object. You can then pass that to the llm.Collection constructor along with the unique string name of the collection and the ID of the embedding model you will be using with that collection:

import sqlite_utils
import llm

This collection will use an in-memory database that will be
discarded when the Python process exits
collection = llm.Collection("entries", model_id="ada-002")

Or you can persist the database to disk like this:
db = sqlite_utils.Database("my-embeddings.db")
collection = llm.Collection("entries", db, model_id="ada-002")

You can pass a model directly using model= instead of model_id=
embedding_model = llm.get_embedding_model("ada-002")
collection = llm.Collection("entries", db, model=embedding_model)

If the collection already exists in the database you can omit the model or model_id argument - the model ID will be read from the collections table.

To embed a single string and store it in the collection, use the embed() method:

collection.embed("hound", "my happy hound")

This stores the embedding for the string “my happy hound” in the entries collection under the key hound.

Add store=True to store the text content itself in the database table along with the embedding vector.

To attach additional metadata to an item, pass a JSON-compatible dictionary as the metadata= argument:

collection.embed("hound", "my happy hound", metadata={"name": "Hound"}, store=True)

This additional metadata will be stored as JSON in the metadata column of the embeddings database table.

Storing embeddings in bulk

The collection.embed_multi() method can be used to store embeddings for multiple items at once. This can be more efficient for some embedding models.

collection.embed_multi(
 [
 ("hound", "my happy hound"),
 ("cat", "my dissatisfied cat"),
],
 # Add this to store the strings in the content column:
 store=True,
)

To include metadata to be stored with each item, call embed_multi_with_metadata():

collection.embed_multi_with_metadata(
 [
 ("hound", "my happy hound", {"name": "Hound"}),
 ("cat", "my dissatisfied cat", {"name": "Cat"}),
],
 # This can also take the store=True argument:
 store=True,
)

The batch_size= argument defaults to 100, and will be used unless the embedding model itself defines a lower batch size. You can adjust this if you are having trouble with memory while embedding large collections:

collection.embed_multi(
 (
 (i, line)
 for i, line in enumerate(lines_in_file)
),
 batch_size=10
)

Collection class reference

A collection instance has the following properties and methods:

	id - the integer ID of the collection in the database

	name - the string name of the collection (unique in the database)

	model_id - the string ID of the embedding model used for this collection

	model() - returns the EmbeddingModel instance, based on that model_id

	count() - returns the integer number of items in the collection

	embed(id: str, text: str, metadata: dict=None, store: bool=False) - embeds the given string and stores it in the collection under the given ID. Can optionally include metadata (stored as JSON) and store the text content itself in the database table.

	embed_multi(entries: Iterable, store: bool=False, batch_size: int=100) - see above

	embed_multi_with_metadata(entries: Iterable, store: bool=False, batch_size: int=100) - see above

	similar(query: str, number: int=10) - returns a list of entries that are most similar to the embedding of the given query string

	similar_by_id(id: str, number: int=10) - returns a list of entries that are most similar to the embedding of the item with the given ID

	similar_by_vector(vector: List[float], number: int=10, skip_id: str=None) - returns a list of entries that are most similar to the given embedding vector, optionally skipping the entry with the given ID

	delete() - deletes the collection and its embeddings from the database

There is also a Collection.exists(db, name) class method which returns a boolean value and can be used to determine if a collection exists or not in a database:

if Collection.exists(db, "entries"):
 print("The entries collection exists")

Retrieving similar items

Once you have populated a collection of embeddings you can retrieve the entries that are most similar to a given string using the similar() method.

This method uses a brute force approach, calculating distance scores against every document. This is fine for small collections, but will not scale to large collections. See issue 216 [https://github.com/simonw/llm/issues/216] for plans to add a more scalable approach via vector indexes provided by plugins.

for entry in collection.similar("hound"):
 print(entry.id, entry.score)

The string will first by embedded using the model for the collection.

The entry object returned is an object with the following properties:

	id - the string ID of the item

	score - the floating point similarity score between the item and the query string

	content - the string text content of the item, if it was stored - or None

	metadata - the dictionary (from JSON) metadata for the item, if it was stored - or None

This defaults to returning the 10 most similar items. You can change this by passing a different number= argument:

for entry in collection.similar("hound", number=5):
 print(entry.id, entry.score)

The similar_by_id() method takes the ID of another item in the collection and returns the most similar items to that one, based on the embedding that has already been stored for it:

for entry in collection.similar_by_id("cat"):
 print(entry.id, entry.score)

The item itself is excluded from the results.

SQL schema

Here’s the SQL schema used by the embeddings database:

CREATE TABLE [collections] (
 [id] INTEGER PRIMARY KEY,
 [name] TEXT,
 [model] TEXT
)
CREATE TABLE "embeddings" (
 [collection_id] INTEGER REFERENCES [collections]([id]),
 [id] TEXT,
 [embedding] BLOB,
 [content] TEXT,
 [content_blob] BLOB,
 [content_hash] BLOB,
 [metadata] TEXT,
 [updated] INTEGER,
 PRIMARY KEY ([collection_id], [id])
)

 Writing plugins to add new embedding models

Writing plugins to add new embedding models

Read the plugin tutorial for details on how to develop and package a plugin.

This page shows an example plugin that implements and registers a new embedding model.

There are two components to an embedding model plugin:

	An implementation of the register_embedding_models() hook, which takes a register callback function and calls it to register the new model with the LLM plugin system.

	A class that extends the llm.EmbeddingModel abstract base class.

The only required method on this class is embed_batch(texts), which takes an iterable of strings and returns an iterator over lists of floating point numbers.

The following example uses the sentence-transformers [https://github.com/UKPLab/sentence-transformers] package to provide access to the MiniLM-L6 [https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2] embedding model.

import llm
from sentence_transformers import SentenceTransformer

@llm.hookimpl
def register_embedding_models(register):
 model_id = "sentence-transformers/all-MiniLM-L6-v2"
 register(SentenceTransformerModel(model_id, model_id), aliases=("all-MiniLM-L6-v2",))

class SentenceTransformerModel(llm.EmbeddingModel):
 def __init__(self, model_id, model_name):
 self.model_id = model_id
 self.model_name = model_name
 self._model = None

 def embed_batch(self, texts):
 if self._model is None:
 self._model = SentenceTransformer(self.model_name)
 results = self._model.encode(texts)
 return (list(map(float, result)) for result in results)

Once installed, the model provided by this plugin can be used with the llm embed command like this:

cat file.txt | llm embed -m sentence-transformers/all-MiniLM-L6-v2

Or via its registered alias like this:

cat file.txt | llm embed -m all-MiniLM-L6-v2

llm-sentence-transformers [https://github.com/simonw/llm-sentence-transformers] is a complete example of a plugin that provides an embedding model.

Execute Jina embeddings with a CLI using llm-embed-jina [https://simonwillison.net/2023/Oct/26/llm-embed-jina/#how-i-built-the-plugin] talks through a similar process to add support for the Jina embeddings models [https://jina.ai/news/jina-ai-launches-worlds-first-open-source-8k-text-embedding-rivaling-openai/].

Embedding binary content

If your model can embed binary content, use the supports_binary property to indicate that:

class ClipEmbeddingModel(llm.EmbeddingModel):
 model_id = "clip"
 supports_binary = True
 supports_text= True

supports_text defaults to True and so is not necessary here. You can set it to False if your model only supports binary data.

If your model accepts binary, your .embed_batch() model may be called with a list of Python bytestrings. These may be mixed with regular strings if the model accepts both types of input.

llm-clip [https://github.com/simonw/llm-clip] is an example of a model that can embed both binary and text content.

 Embedding storage format

Embedding storage format

The default output format of the llm embed command is a JSON array of floating point numbers.

LLM stores embeddings in space-efficient format: a little-endian binary sequences of 32-bit floating point numbers, each represented using 4 bytes.

These are stored in a BLOB column in a SQLite database.

The following Python functions can be used to convert between this format and an array of floating point numbers:

import struct

def encode(values):
 return struct.pack("<" + "f" * len(values), *values)

def decode(binary):
 return struct.unpack("<" + "f" * (len(binary) // 4), binary)

These functions are available as llm.encode() and llm.decode().

If you are using NumPy [https://numpy.org/] you can decode one of these binary values like this:

import numpy as np

numpy_array = np.frombuffer(value, "<f4")

The <f4 format string here ensures NumPy will treat the data as a little-endian sequence of 32-bit floats.

 Plugins

Plugins

LLM plugins can enhance LLM by making alternative Large Language Models available, either via API or by running the models locally on your machine.

Plugins can also add new commands to the llm CLI tool.

The plugin directory lists available plugins that you can install and use.

Writing a plugin to support a new model describes how to build a new plugin in detail.

	Installing plugins
	Listing installed plugins

	Running with a subset of plugins

	Plugin directory
	Local models

	Remote APIs

	Embedding models

	Extra commands

	Just for fun

	Plugin hooks
	register_commands(cli)

	register_models(register)

	Writing a plugin to support a new model
	The initial structure of the plugin

	Installing your plugin to try it out

	Building the Markov chain

	Executing the Markov chain

	Adding that to the plugin

	Understanding execute()

	Prompts and responses are logged to the database

	Adding options

	Distributing your plugin
	Wheels and sdist packages

	GitHub Gists

	GitHub repositories

	Publishing plugins to PyPI

	Adding metadata

	What to do if it breaks

	Utility functions for plugins
	llm.user_dir()

	llm.ModelError

	Response.fake()

 Installing plugins

Installing plugins

Plugins must be installed in the same virtual environment as LLM itself.

You can find names of plugins to install in the plugin directory

Use the llm install command (a thin wrapper around pip install) to install plugins in the correct environment:

llm install llm-gpt4all

Plugins can be uninstalled with llm uninstall:

llm uninstall llm-gpt4all -y

The -y flag skips asking for confirmation.

You can see additional models that have been added by plugins by running:

llm models

Or add --options to include details of the options available for each model:

llm models --options

To run a prompt against a newly installed model, pass its name as the -m/--model option:

llm -m orca-mini-3b-gguf2-q4_0 'What is the capital of France?'

Listing installed plugins

Run llm plugins to list installed plugins:

llm plugins

[
 {
 "name": "llm-mpt30b",
 "hooks": [
 "register_commands",
 "register_models"
],
 "version": "0.1"
 },
 {
 "name": "llm-palm",
 "hooks": [
 "register_commands",
 "register_models"
],
 "version": "0.1"
 },
 {
 "name": "llm.default_plugins.openai_models",
 "hooks": [
 "register_commands",
 "register_models"
]
 },
 {
 "name": "llm-gpt4all",
 "hooks": [
 "register_models"
],
 "version": "0.1"
 }
]

Running with a subset of plugins

By default, LLM will load all plugins that are installed in the same virtual environment as LLM itself.

You can control the set of plugins that is loaded using the LLM_LOAD_PLUGINS environment variable.

Set that to the empty string to disable all plugins:

LLM_LOAD_PLUGINS='' llm ...

Or to a comma-separated list of plugin names to load only those plugins:

LLM_LOAD_PLUGINS='llm-gpt4all,llm-cluster' llm ...

You can use the llm plugins command to check that it is working correctly:

LLM_LOAD_PLUGINS='' llm plugins

 Plugin directory

Plugin directory

The following plugins are available for LLM. Here’s how to install them.

Local models

These plugins all help you run LLMs directly on your own computer:

	llm-llama-cpp [https://github.com/simonw/llm-llama-cpp] uses llama.cpp [https://github.com/ggerganov/llama.cpp] to run models published in the GGUF format.

	llm-mlc [https://github.com/simonw/llm-mlc] can run local models released by the MLC project [https://mlc.ai/mlc-llm/], including models that can take advantage of the GPU on Apple Silicon M1/M2 devices.

	llm-gpt4all [https://github.com/simonw/llm-gpt4all] adds support for various models released by the GPT4All [https://gpt4all.io/] project that are optimized to run locally on your own machine. These models include versions of Vicuna, Orca, Falcon and MPT - here’s a full list of models [https://observablehq.com/@simonw/gpt4all-models].

	llm-mpt30b [https://github.com/simonw/llm-mpt30b] adds support for the MPT-30B [https://huggingface.co/mosaicml/mpt-30b] local model.

	llm-ollama [https://github.com/taketwo/llm-ollama] adds support for local models run using Ollama [https://ollama.ai/].

Remote APIs

These plugins can be used to interact with remotely hosted models via their API:

	llm-mistral [https://github.com/simonw/llm-mistral] adds support for Mistral AI [https://mistral.ai/]’s language and embedding models.

	llm-gemini [https://github.com/simonw/llm-gemini] adds support for Google’s Gemini [https://ai.google.dev/docs] models.

	llm-claude [https://github.com/tomviner/llm-claude] by Tom Viner adds support for Claude 2.1 and Claude Instant 2.1 by Anthropic.

	llm-claude-3 [https://github.com/simonw/llm-claude-3] supports Anthropic’s Claude 3 family [https://www.anthropic.com/news/claude-3-family] of models.

	llm-command-r [https://github.com/simonw/llm-command-r] supports Cohere’s Command R and Command R Plus [https://txt.cohere.com/command-r-plus-microsoft-azure/] API models.

	llm-reka [https://github.com/simonw/llm-reka] supports the Reka [https://www.reka.ai/] family of models via their API.

	llm-perplexity [https://github.com/hex/llm-perplexity] by Alexandru Geana supports the Perplexity Labs [https://docs.perplexity.ai/] API models, including sonar-medium-online which can search for things online and llama-3-70b-instruct.

	llm-groq [https://github.com/angerman/llm-groq] by Moritz Angermann provides access to fast models hosted by Groq [https://console.groq.com/docs/models].

	llm-anyscale-endpoints [https://github.com/simonw/llm-anyscale-endpoints] supports models hosted on the Anyscale Endpoints [https://app.endpoints.anyscale.com/] platform, including Llama 2 70B.

	llm-replicate [https://github.com/simonw/llm-replicate] adds support for remote models hosted on Replicate [https://replicate.com/], including Llama 2 from Meta AI.

	llm-fireworks [https://github.com/simonw/llm-fireworks] supports models hosted by Fireworks AI [https://fireworks.ai/].

	llm-palm [https://github.com/simonw/llm-palm] adds support for Google’s PaLM 2 model [https://developers.generativeai.google/].

	llm-openrouter [https://github.com/simonw/llm-openrouter] provides access to models hosted on OpenRouter [https://openrouter.ai/].

	llm-cohere [https://github.com/Accudio/llm-cohere] by Alistair Shepherd provides cohere-generate and cohere-summarize API models, powered by Cohere [https://cohere.com/].

	llm-bedrock-anthropic [https://github.com/sblakey/llm-bedrock-anthropic] by Sean Blakey adds support for Claude and Claude Instant by Anthropic via Amazon Bedrock.

	llm-bedrock-meta [https://github.com/flabat/llm-bedrock-meta] by Fabian Labat adds support for Llama 2 by Meta via Amazon Bedrock.

	llm-together [https://github.com/wearedevx/llm-together] adds support for the Together AI [https://www.together.ai/] extensive family of hosted openly licensed models.

If an API model host provides an OpenAI-compatible API you can also configure LLM to talk to it [https://llm.datasette.io/en/stable/other-models.html#openai-compatible-models] without needing an extra plugin.

Embedding models

Embedding models are models that can be used to generate and store embedding vectors for text.

	llm-sentence-transformers [https://github.com/simonw/llm-sentence-transformers] adds support for embeddings using the sentence-transformers [https://www.sbert.net/] library, which provides access to a wide range [https://www.sbert.net/docs/pretrained_models.html] of embedding models.

	llm-clip [https://github.com/simonw/llm-clip] provides the CLIP [https://openai.com/research/clip] model, which can be used to embed images and text in the same vector space, enabling text search against images. See Build an image search engine with llm-clip [https://simonwillison.net/2023/Sep/12/llm-clip-and-chat/] for more on this plugin.

	llm-embed-jina [https://github.com/simonw/llm-embed-jina] provides Jina AI’s 8K text embedding models [https://jina.ai/news/jina-ai-launches-worlds-first-open-source-8k-text-embedding-rivaling-openai/].

	llm-embed-onnx [https://github.com/simonw/llm-embed-onnx] provides seven embedding models that can be executed using the ONNX model framework.

Extra commands

	llm-cmd [https://github.com/simonw/llm-cmd] accepts a prompt for a shell command, runs that prompt and populates the result in your shell so you can review it, edit it and then hit <enter> to execute or ctrl+c to cancel.

	llm-python [https://github.com/simonw/llm-python] adds a llm python command for running a Python interpreter in the same virtual environment as LLM. This is useful for debugging, and also provides a convenient way to interact with the LLM Python API if you installed LLM using Homebrew or pipx.

	llm-cluster [https://github.com/simonw/llm-cluster] adds a llm cluster command for calculating clusters for a collection of embeddings. Calculated clusters can then be passed to a Large Language Model to generate a summary description.

Just for fun

	llm-markov [https://github.com/simonw/llm-markov] adds a simple model that generates output using a Markov chain [https://en.wikipedia.org/wiki/Markov_chain]. This example is used in the tutorial Writing a plugin to support a new model [https://llm.datasette.io/en/latest/plugins/tutorial-model-plugin.html].

 Plugin hooks

Plugin hooks

Plugins use plugin hooks to customize LLM’s behavior. These hooks are powered by the Pluggy plugin system [https://pluggy.readthedocs.io/].

Each plugin can implement one or more hooks using the @hookimpl decorator against one of the hook function names described on this page.

LLM imitates the Datasette plugin system. The Datasette plugin documentation [https://docs.datasette.io/en/stable/writing_plugins.html] describes how plugins work.

register_commands(cli)

This hook adds new commands to the llm CLI tool - for example llm extra-command.

This example plugin adds a new hello-world command that prints “Hello world!”:

from llm import hookimpl
import click

@hookimpl
def register_commands(cli):
 @cli.command(name="hello-world")
 def hello_world():
 "Print hello world"
 click.echo("Hello world!")

This new command will be added to llm --help and can be run using llm hello-world.

register_models(register)

This hook can be used to register one or more additional models.

import llm

@llm.hookimpl
def register_models(register):
 register(HelloWorld())

class HelloWorld(llm.Model):
 model_id = "helloworld"

 def execute(self, prompt, stream, response):
 return ["hello world"]

Writing a plugin to support a new model describes how to use this hook in detail.

 Writing a plugin to support a new model

Writing a plugin to support a new model

This tutorial will walk you through developing a new plugin for LLM that adds support for a new Large Language Model.

We will be developing a plugin that implements a simple Markov chain [https://en.wikipedia.org/wiki/Markov_chain] to generate words based on an input string. Markov chains are not technically large language models, but they provide a useful exercise for demonstrating how the LLM tool can be extended through plugins.

The initial structure of the plugin

First create a new directory with the name of your plugin - it should be called something like llm-markov.

mkdir llm-markov
cd llm-markov

In that directory create a file called llm_markov.py containing this:

import llm

@llm.hookimpl
def register_models(register):
 register(Markov())

class Markov(llm.Model):
 model_id = "markov"

 def execute(self, prompt, stream, response, conversation):
 return ["hello world"]

The def register_models() function here is called by the plugin system (thanks to the @hookimpl decorator). It uses the register() function passed to it to register an instance of the new model.

The Markov class implements the model. It sets a model_id - an identifier that can be passed to llm -m in order to identify the model to be executed.

The logic for executing the model goes in the execute() method. We’ll extend this to do something more useful in a later step.

Next, create a pyproject.toml file. This is necessary to tell LLM how to load your plugin:

[project]
name = "llm-markov"
version = "0.1"

[project.entry-points.llm]
markov = "llm_markov"

This is the simplest possible configuration. It defines a plugin name and provides an entry point [https://setuptools.pypa.io/en/latest/userguide/entry_point.html] for llm telling it how to load the plugin.

If you are comfortable with Python virtual environments you can create one now for your project, activate it and run pip install llm before the next step.

If you aren’t familiar with virtual environments, don’t worry: you can develop plugins without them. You’ll need to have LLM installed using Homebrew or pipx or one of the other installation options [https://llm.datasette.io/en/latest/setup.html#installation].

Installing your plugin to try it out

Having created a directory with a pyproject.toml file and an llm_markov.py file, you can install your plugin into LLM by running this from inside your llm-markov directory:

llm install -e .

The -e stands for “editable” - it means you’ll be able to make further changes to the llm_markov.py file that will be reflected without you having to reinstall the plugin.

The . means the current directory. You can also install editable plugins by passing a path to their directory this:

llm install -e path/to/llm-markov

To confirm that your plugin has installed correctly, run this command:

llm plugins

The output should look like this:

[
 {
 "name": "llm-markov",
 "hooks": [
 "register_models"
],
 "version": "0.1"
 },
 {
 "name": "llm.default_plugins.openai_models",
 "hooks": [
 "register_commands",
 "register_models"
]
 }
]

This command lists default plugins that are included with LLM as well as new plugins that have been installed.

Now let’s try the plugin by running a prompt through it:

llm -m markov "the cat sat on the mat"

It outputs:

hello world

Next, we’ll make it execute and return the results of a Markov chain.

Building the Markov chain

Markov chains can be thought of as the simplest possible example of a generative language model. They work by building an index of words that have been seen following other words.

Here’s what that index looks like for the phrase “the cat sat on the mat”

{
 "the": ["cat", "mat"],
 "cat": ["sat"],
 "sat": ["on"],
 "on": ["the"]
}

Here’s a Python function that builds that data structure from a text input:

def build_markov_table(text):
 words = text.split()
 transitions = {}
 # Loop through all but the last word
 for i in range(len(words) - 1):
 word = words[i]
 next_word = words[i + 1]
 transitions.setdefault(word, []).append(next_word)
 return transitions

We can try that out by pasting it into the interactive Python interpreter and running this:

>>> transitions = build_markov_table("the cat sat on the mat")
>>> transitions
{'the': ['cat', 'mat'], 'cat': ['sat'], 'sat': ['on'], 'on': ['the']}

Executing the Markov chain

To execute the model, we start with a word. We look at the options for words that might come next and pick one of those at random. Then we repeat that process until we have produced the desired number of output words.

Some words might not have any following words from our training sentence. For our implementation we wil fall back on picking a random word from our collection.

We will implement this as a Python generator [https://realpython.com/introduction-to-python-generators/], using the yield keyword to produce each token:

def generate(transitions, length, start_word=None):
 all_words = list(transitions.keys())
 next_word = start_word or random.choice(all_words)
 for i in range(length):
 yield next_word
 options = transitions.get(next_word) or all_words
 next_word = random.choice(options)

If you aren’t familiar with generators, the above code could also be implemented like this - creating a Python list and returning it at the end of the function:

def generate_list(transitions, length, start_word=None):
 all_words = list(transitions.keys())
 next_word = start_word or random.choice(all_words)
 output = []
 for i in range(length):
 output.append(next_word)
 options = transitions.get(next_word) or all_words
 next_word = random.choice(options)
 return output

You can try out the generate() function like this:

lookup = build_markov_table("the cat sat on the mat")
for word in generate(transitions, 20):
 print(word)

Or you can generate a full string sentence with it like this:

sentence = " ".join(generate(transitions, 20))

Adding that to the plugin

Our execute() method from earlier currently returns the list ["hello world"].

Update that to use our new Markov chain generator instead. Here’s the full text of the new llm_markov.py file:

import llm
import random

@llm.hookimpl
def register_models(register):
 register(Markov())

def build_markov_table(text):
 words = text.split()
 transitions = {}
 # Loop through all but the last word
 for i in range(len(words) - 1):
 word = words[i]
 next_word = words[i + 1]
 transitions.setdefault(word, []).append(next_word)
 return transitions

def generate(transitions, length, start_word=None):
 all_words = list(transitions.keys())
 next_word = start_word or random.choice(all_words)
 for i in range(length):
 yield next_word
 options = transitions.get(next_word) or all_words
 next_word = random.choice(options)

class Markov(llm.Model):
 model_id = "markov"

 def execute(self, prompt, stream, response, conversation):
 text = prompt.prompt
 transitions = build_markov_table(text)
 for word in generate(transitions, 20):
 yield word + ' '

The execute() method can access the text prompt that the user provided using prompt.prompt - prompt is a Prompt object that might include other more advanced input details as well.

Now when you run this you should see the output of the Markov chain!

llm -m markov "the cat sat on the mat"

the mat the cat sat on the cat sat on the mat cat sat on the mat cat sat on

Understanding execute()

The full signature of the execute() method is:

def execute(self, prompt, stream, response, conversation):

The prompt argument is a Prompt object that contains the text that the user provided, the system prompt and the provided options.

stream is a boolean that says if the model is being run in streaming mode.

response is the Response object that is being created by the model. This is provided so you can write additional information to response.response_json, which may be logged to the database.

conversation is the Conversation that the prompt is a part of - or None if no conversation was provided. Some models may use conversation.responses to access previous prompts and responses in the conversation and use them to construct a call to the LLM that includes previous context.

Prompts and responses are logged to the database

The prompt and the response will be logged to a SQLite database automatically by LLM. You can see the single most recent addition to the logs using:

llm logs -n 1

The output should look something like this:

[
 {
 "id": "01h52s4yez2bd1qk2deq49wk8h",
 "model": "markov",
 "prompt": "the cat sat on the mat",
 "system": null,
 "prompt_json": null,
 "options_json": {},
 "response": "on the cat sat on the cat sat on the mat cat sat on the cat sat on the cat ",
 "response_json": null,
 "conversation_id": "01h52s4yey7zc5rjmczy3ft75g",
 "duration_ms": 0,
 "datetime_utc": "2023-07-11T15:29:34.685868",
 "conversation_name": "the cat sat on the mat",
 "conversation_model": "markov"
 }
]

Plugins can log additional information to the database by assigning a dictionary to the response.response_json property during the execute() method.

Here’s how to include that full transitions table in the response_json in the log:

 def execute(self, prompt, stream, response, conversation):
 text = self.prompt.prompt
 transitions = build_markov_table(text)
 for word in generate(transitions, 20):
 yield word + ' '
 response.response_json = {"transitions": transitions}

Now when you run the logs command you’ll see that too:

llm logs -n 1

[
 {
 "id": 623,
 "model": "markov",
 "prompt": "the cat sat on the mat",
 "system": null,
 "prompt_json": null,
 "options_json": {},
 "response": "on the mat the cat sat on the cat sat on the mat sat on the cat sat on the ",
 "response_json": {
 "transitions": {
 "the": [
 "cat",
 "mat"
],
 "cat": [
 "sat"
],
 "sat": [
 "on"
],
 "on": [
 "the"
]
 }
 },
 "reply_to_id": null,
 "chat_id": null,
 "duration_ms": 0,
 "datetime_utc": "2023-07-06T01:34:45.376637"
 }
]

In this particular case this isn’t a great idea here though: the transitions table is duplicate information, since it can be reproduced from the input data - and it can get really large for longer prompts.

Adding options

LLM models can take options. For large language models these can be things like temperature or top_k.

Options are passed using the -o/--option command line parameters, for example:

llm -m gpt4 "ten pet pelican names" -o temperature 1.5

We’re going to add two options to our Markov chain model:

	length: Number of words to generate

	delay: a floating point number of Delay in between output token

The delay token will let us simulate a streaming language model, where tokens take time to generate and are returned by the execute() function as they become ready.

Options are defined using an inner class on the model, called Options. It should extend the llm.Options class.

First, add this import to the top of your llm_markov.py file:

from typing import Optional

Then add this Options class to your model:

class Markov(Model):
 model_id = "markov"

 class Options(llm.Options):
 length: Optional[int] = None
 delay: Optional[float] = None

Let’s add extra validation rules to our options. Length must be at least 2. Duration must be between 0 and 10.

The Options class uses Pydantic 2 [https://pydantic.org/], which can support all sorts of advanced validation rules.

We can also add inline documentation, which can then be displayed by the llm models --options command.

Add these imports to the top of llm_markov.py:

from pydantic import field_validator, Field

We can now add Pydantic field validators for our two new rules, plus inline documentation:

 class Options(llm.Options):
 length: Optional[int] = Field(
 description="Number of words to generate",
 default=None
)
 delay: Optional[float] = Field(
 description="Seconds to delay between each token",
 default=None
)

 @field_validator("length")
 def validate_length(cls, length):
 if length is None:
 return None
 if length < 2:
 raise ValueError("length must be >= 2")
 return length

 @field_validator("delay")
 def validate_delay(cls, delay):
 if delay is None:
 return None
 if not 0 <= delay <= 10:
 raise ValueError("delay must be between 0 and 10")
 return delay

Lets test our options validation:

llm -m markov "the cat sat on the mat" -o length -1

Error: length
 Value error, length must be >= 2

Next, we will modify our execute() method to handle those options. Add this to the beginning of llm_markov.py:

import time

Then replace the execute() method with this one:

 def execute(self, prompt, stream, response, conversation):
 text = prompt.prompt
 transitions = build_markov_table(text)
 length = prompt.options.length or 20
 for word in generate(transitions, length):
 yield word + ' '
 if prompt.options.delay:
 time.sleep(prompt.options.delay)

Add can_stream = True to the top of the Markov model class, on the line below `model_id = “markov”. This tells LLM that the model is able to stream content to the console.

The full llm_markov.py file should now look like this:

import llm
import random
import time
from typing import Optional
from pydantic import field_validator, Field

@llm.hookimpl
def register_models(register):
 register(Markov())

def build_markov_table(text):
 words = text.split()
 transitions = {}
 # Loop through all but the last word
 for i in range(len(words) - 1):
 word = words[i]
 next_word = words[i + 1]
 transitions.setdefault(word, []).append(next_word)
 return transitions

def generate(transitions, length, start_word=None):
 all_words = list(transitions.keys())
 next_word = start_word or random.choice(all_words)
 for i in range(length):
 yield next_word
 options = transitions.get(next_word) or all_words
 next_word = random.choice(options)

class Markov(llm.Model):
 model_id = "markov"
 can_stream = True

 class Options(llm.Options):
 length: Optional[int] = Field(
 description="Number of words to generate", default=None
)
 delay: Optional[float] = Field(
 description="Seconds to delay between each token", default=None
)

 @field_validator("length")
 def validate_length(cls, length):
 if length is None:
 return None
 if length < 2:
 raise ValueError("length must be >= 2")
 return length

 @field_validator("delay")
 def validate_delay(cls, delay):
 if delay is None:
 return None
 if not 0 <= delay <= 10:
 raise ValueError("delay must be between 0 and 10")
 return delay

 def execute(self, prompt, stream, response, conversation):
 text = prompt.prompt
 transitions = build_markov_table(text)
 length = prompt.options.length or 20
 for word in generate(transitions, length):
 yield word + " "
 if prompt.options.delay:
 time.sleep(prompt.options.delay)

Now we can request a 20 word completion with a 0.1s delay between tokens like this:

llm -m markov "the cat sat on the mat" \
 -o length 20 -o delay 0.1

LLM provides a --no-stream option users can use to turn off streaming. Using that option causes LLM to gather the response from the stream and then return it to the console in one block. You can try that like this:

llm -m markov "the cat sat on the mat" \
 -o length 20 -o delay 0.1 --no-stream

In this case it will still delay for 2s total while it gathers the tokens, then output them all at once.

That --no-stream option causes the stream argument passed to execute() to be false. Your execute() method can then behave differently depending on whether it is streaming or not.

Options are also logged to the database. You can see those here:

llm logs -n 1

[
 {
 "id": 636,
 "model": "markov",
 "prompt": "the cat sat on the mat",
 "system": null,
 "prompt_json": null,
 "options_json": {
 "length": 20,
 "delay": 0.1
 },
 "response": "the mat on the mat on the cat sat on the mat sat on the mat cat sat on the ",
 "response_json": null,
 "reply_to_id": null,
 "chat_id": null,
 "duration_ms": 2063,
 "datetime_utc": "2023-07-07T03:02:28.232970"
 }
]

Distributing your plugin

There are many different options for distributing your new plugin so other people can try it out.

You can create a downloadable wheel or .zip or .tar.gz files, or share the plugin through GitHub Gists or repositories.

You can also publish your plugin to PyPI, the Python Package Index.

Wheels and sdist packages

The easiest option is to produce a distributable package is to use the build command. First, install the build package by running this:

python -m pip install build

Then run build in your plugin directory to create the packages:

python -m build

This will create two files: dist/llm-markov-0.1.tar.gz and dist/llm-markov-0.1-py3-none-any.whl.

Either of these files can be used to install the plugin:

llm install dist/llm_markov-0.1-py3-none-any.whl

If you host this file somewhere online other people will be able to install it using pip install against the URL to your package:

llm install 'https://.../llm_markov-0.1-py3-none-any.whl'

You can run the following command at any time to uninstall your plugin, which is useful for testing out different installation methods:

llm uninstall llm-markov -y

GitHub Gists

A neat quick option for distributing a simple plugin is to host it in a GitHub Gist. These are available for free with a GitHub account, and can be public or private. Gists can contain multiple files but don’t support directory structures - which is OK, because our plugin is just two files, pyproject.toml and llm_markov.py.

Here’s an example Gist I created for this tutorial:

https://gist.github.com/simonw/6e56d48dc2599bffba963cef0db27b6d

You can turn a Gist into an installable .zip URL by right-clicking on the “Download ZIP” button and selecting “Copy Link”. Here’s that link for my example Gist:

https://gist.github.com/simonw/6e56d48dc2599bffba963cef0db27b6d/archive/cc50c854414cb4deab3e3ab17e7e1e07d45cba0c.zip

The plugin can be installed using the llm install command like this:

llm install 'https://gist.github.com/simonw/6e56d48dc2599bffba963cef0db27b6d/archive/cc50c854414cb4deab3e3ab17e7e1e07d45cba0c.zip'

GitHub repositories

The same trick works for regular GitHub repositories as well: the “Download ZIP” button can be found by clicking the green “Code” button at the top of the repository. The URL which that provide scan then be used to install the plugin that lives in that repository.

Publishing plugins to PyPI

The Python Package Index (PyPI) [https://pypi.org/] is the official repository for Python packages. You can upload your plugin to PyPI and reserve a name for it - once you have done that, anyone will be able to install your plugin using llm install <name>.

Follow these instructions [https://packaging.python.org/en/latest/tutorials/packaging-projects/#uploading-the-distribution-archives] to publish a package to PyPI. The short version:

python -m pip install twine
python -m twine upload dist/*

You will need an account on PyPI, then you can enter your username and password - or create a token in the PyPI settings and use __token__ as the username and the token as the password.

Adding metadata

Before uploading a package to PyPI it’s a good idea to add documentation and expand pyproject.toml with additional metadata.

Create a README.md file in the root of your plugin directory with instructions about how to install, configure and use your plugin.

You can then replace pyproject.toml with something like this:

[project]
name = "llm-markov"
version = "0.1"
description = "Plugin for LLM adding a Markov chain generating model"
readme = "README.md"
authors = [{name = "Simon Willison"}]
license = {text = "Apache-2.0"}
classifiers = [
 "License :: OSI Approved :: Apache Software License"
]
dependencies = [
 "llm"
]
requires-python = ">3.7"

[project.urls]
Homepage = "https://github.com/simonw/llm-markov"
Changelog = "https://github.com/simonw/llm-markov/releases"
Issues = "https://github.com/simonw/llm-markov/issues"

[project.entry-points.llm]
markov = "llm_markov"

This will pull in your README to be displayed as part of your project’s listing page on PyPI.

It adds llm as a dependency, ensuring it will be installed if someone tries to install your plugin package without it.

It adds some links to useful pages (you can drop the project.urls section if those links are not useful for your project).

You should drop a LICENSE file into the GitHub repository for your package as well. I like to use the Apache 2 license like this [https://github.com/simonw/llm/blob/main/LICENSE].

What to do if it breaks

Sometimes you may make a change to your plugin that causes it to break, preventing llm from starting. For example you may see an error like this one:

$ llm 'hi'
Traceback (most recent call last):
 ...
 File llm-markov/llm_markov.py", line 10
 register(Markov()):
 ^
SyntaxError: invalid syntax

You may find that you are unable to uninstall the plugin using llm uninstall llm-markov because the command itself fails with the same error.

Should this happen, you can uninstall the plugin after first disabling it using the LLM_LOAD_PLUGINS environment variable like this:

LLM_LOAD_PLUGINS='' llm uninstall llm-markov

 Utility functions for plugins

Utility functions for plugins

LLM provides some utility functions that may be useful to plugins.

llm.user_dir()

LLM stores various pieces of logging and configuration data in a directory on the user’s machine.

On macOS this directory is ~/Library/Application Support/io.datasette.llm, but this will differ on other operating systems.

The llm.user_dir() function returns the path to this directory as a pathlib.Path object, after creating that directory if it does not yet exist.

Plugins can use this to store their own data in a subdirectory of this directory.

import llm
user_dir = llm.user_dir()
plugin_dir = data_path = user_dir / "my-plugin"
plugin_dir.mkdir(exist_ok=True)
data_path = plugin_dir / "plugin-data.db"

llm.ModelError

If your model encounters an error that should be reported to the user you can raise this exception. For example:

import llm

raise ModelError("MPT model not installed - try running 'llm mpt30b download'")

This will be caught by the CLI layer and displayed to the user as an error message.

Response.fake()

When writing tests for a model it can be useful to generate fake response objects, for example in this test from llm-mpt30b [https://github.com/simonw/llm-mpt30b]:

def test_build_prompt_conversation():
 model = llm.get_model("mpt")
 conversation = model.conversation()
 conversation.responses = [
 llm.Response.fake(model, "prompt 1", "system 1", "response 1"),
 llm.Response.fake(model, "prompt 2", None, "response 2"),
 llm.Response.fake(model, "prompt 3", None, "response 3"),
]
 lines = model.build_prompt(llm.Prompt("prompt 4", model), conversation)
 assert lines == [
 "<|im_start|>system\system 1<|im_end|>\n",
 "<|im_start|>user\nprompt 1<|im_end|>\n",
 "<|im_start|>assistant\nresponse 1<|im_end|>\n",
 "<|im_start|>user\nprompt 2<|im_end|>\n",
 "<|im_start|>assistant\nresponse 2<|im_end|>\n",
 "<|im_start|>user\nprompt 3<|im_end|>\n",
 "<|im_start|>assistant\nresponse 3<|im_end|>\n",
 "<|im_start|>user\nprompt 4<|im_end|>\n",
 "<|im_start|>assistant\n",
]

The signature of llm.Response.fake() is:

def fake(cls, model: Model, prompt: str, system: str, response: str):

 Model aliases

Model aliases

LLM supports model aliases, which allow you to refer to a model by a short name instead of its full ID.

Listing aliases

To list current aliases, run this:

llm aliases

Example output:

3.5 : gpt-3.5-turbo
chatgpt : gpt-3.5-turbo
chatgpt-16k : gpt-3.5-turbo-16k
3.5-16k : gpt-3.5-turbo-16k
4 : gpt-4
gpt4 : gpt-4
4-32k : gpt-4-32k
gpt-4-turbo : gpt-4-turbo-preview
4-turbo : gpt-4-turbo-preview
4t : gpt-4-turbo-preview
3.5-instruct : gpt-3.5-turbo-instruct
chatgpt-instruct : gpt-3.5-turbo-instruct
ada : ada-002 (embedding)

Add --json to get that list back as JSON:

llm aliases list --json

Example output:

{
 "3.5": "gpt-3.5-turbo",
 "chatgpt": "gpt-3.5-turbo",
 "chatgpt-16k": "gpt-3.5-turbo-16k",
 "3.5-16k": "gpt-3.5-turbo-16k",
 "4": "gpt-4",
 "gpt4": "gpt-4",
 "4-32k": "gpt-4-32k",
 "ada": "ada-002"
}

Adding a new alias

The llm aliases set <alias> <model-id> command can be used to add a new alias:

llm aliases set turbo gpt-3.5-turbo-16k

Now you can run the gpt-3.5-turbo-16k model using the turbo alias like this:

llm -m turbo 'An epic Greek-style saga about a cheesecake that builds a SQL database from scratch'

Aliases can be set for both regular models and embedding models using the same command. To set an alias of oai for the OpenAI ada-002 embedding model use this:

llm aliases set oai ada-002

Now you can embed a string using that model like so:

llm embed -c 'hello world' -m oai

Output:

[-0.014945968054234982, 0.0014304015785455704, ...]

Removing an alias

The llm aliases remove <alias> command will remove the specified alias:

llm aliases remove turbo

Viewing the aliases file

Aliases are stored in an aliases.json file in the LLM configuration directory.

To see the path to that file, run this:

llm aliases path

To view the content of that file, run this:

cat "$(llm aliases path)"

 Python API

Python API

LLM provides a Python API for executing prompts, in addition to the command-line interface.

Understanding this API is also important for writing Plugins.

Basic prompt execution

To run a prompt against the gpt-3.5-turbo model, run this:

import llm

model = llm.get_model("gpt-3.5-turbo")
model.key = 'YOUR_API_KEY_HERE'
response = model.prompt("Five surprising names for a pet pelican")
print(response.text())

The llm.get_model() function accepts model names or aliases - so chatgpt would work here too.

The __str__() method of response also returns the text of the response, so you can do this instead:

print(response)

You can run this command to see a list of available models and their aliases:

llm models

If you have set a OPENAI_API_KEY environment variable you can omit the model.key = line.

Calling llm.get_model() with an invalid model name will raise a llm.UnknownModelError exception.

System prompts

For models that accept a system prompt, pass it as system="...":

response = model.prompt(
 "Five surprising names for a pet pelican",
 system="Answer like GlaDOS"
)

Model options

For models that support options (view those with llm models --options) you can pass options as keyword arguments to the .prompt() method:

model = llm.get_model("gpt-3.5-turbo")
model.key = "... key here ..."
print(model.prompt("Names for otters", temperature=0.2))

Models from plugins

Any models you have installed as plugins will also be available through this mechanism, for example to use Google’s PaLM 2 model with llm-palm [https://github.com/simonw/llm-palm]

pip install llm-palm

import llm

model = llm.get_model("palm")
model.key = 'YOUR_API_KEY_HERE'
response = model.prompt("Five surprising names for a pet pelican")
print(response.text())

You can omit the model.key = line for models that do not use an API key

Streaming responses

For models that support it you can stream responses as they are generated, like this:

response = model.prompt("Five diabolical names for a pet goat")
for chunk in response:
 print(chunk, end="")

The response.text() method described earlier does this for you - it runs through the iterator and gathers the results into a string.

If a response has been evaluated, response.text() will continue to return the same string.

Conversations

LLM supports conversations, where you ask follow-up questions of a model as part of an ongoing conversation.

To start a new conversation, use the model.conversation() method:

model = llm.get_model("gpt-3.5-turbo")
model.key = 'YOUR_API_KEY_HERE'
conversation = model.conversation()

You can then use the conversation.prompt() method to execute prompts against this conversation:

response = conversation.prompt("Five fun facts about pelicans")
print(response.text())

This works exactly the same as the model.prompt() method, except that the conversation will be maintained across multiple prompts. So if you run this next:

response2 = conversation.prompt("Now do skunks")
print(response2.text())

You will get back five fun facts about skunks.

Access conversation.responses for a list of all of the responses that have so far been returned during the conversation.

Other functions

The llm top level package includes some useful utility functions.

set_alias(alias, model_id)

The llm.set_alias() function can be used to define a new alias:

import llm

llm.set_alias("turbo", "gpt-3.5-turbo")

The second argument can be a model identifier or another alias, in which case that alias will be resolved.

If the aliases.json file does not exist or contains invalid JSON it will be created or overwritten.

remove_alias(alias)

Removes the alias with the given name from the aliases.json file.

Raises KeyError if the alias does not exist.

import llm

llm.remove_alias("turbo")

 Prompt templates

Prompt templates

Prompt templates can be created to reuse useful prompts with different input data.

Getting started

The easiest way to create a template is using the --save template_name option.

Here’s how to create a template for summarizing text:

llm 'Summarize this: $input' --save summarize

You can also create templates using system prompts:

llm --system 'Summarize this' --save summarize

You can set the default model for a template using --model:

llm --system 'Summarize this' --model gpt-4 --save summarize

You can also save default parameters:

llm --system 'Summarize this text in the voice of $voice' \
 --model gpt-4 -p voice GlaDOS --save summarize

Using a template

You can execute a named template using the -t/--template option:

curl -s https://example.com/ | llm -t summarize

This can be combined with the -m option to specify a different model:

curl -s https://llm.datasette.io/en/latest/ | \
 llm -t summarize -m gpt-3.5-turbo-16k

Listing available templates

This command lists all available templates:

llm templates

The output looks something like this:

cmd : system: reply with macos terminal commands only, no extra information
glados : system: You are GlaDOS prompt: Summarize this: $input

Templates as YAML files

Templates are stored as YAML files on disk.

You can edit (or create) a YAML file for a template using the llm templates edit command:

llm templates edit summarize

This will open the system default editor.

Tip

You can control which editor will be used here using the EDITOR environment variable - for example, to use VS Code:

export EDITOR="code -w"

Add that to your ~/.zshrc or ~/.bashrc file depending on which shell you use (zsh is the default on macOS since macOS Catalina in 2019).

You can also create a file called summary.yaml in the folder shown by running llm templates path, for example:

$ llm templates path
/Users/simon/Library/Application Support/io.datasette.llm/templates

You can also represent this template as a YAML dictionary with a prompt: key, like this one:

prompt: 'Summarize this: $input'

Or use YAML multi-line strings for longer inputs. I created this using llm templates edit steampunk:

prompt: >
 Summarize the following text.

 Insert frequent satirical steampunk-themed illustrative anecdotes.
 Really go wild with that.

 Text to summarize: $input

The prompt: > causes the following indented text to be treated as a single string, with newlines collapsed to spaces. Use prompt: | to preserve newlines.

Running that with llm -t steampunk against GPT-4 (via strip-tags [https://github.com/simonw/strip-tags] to remove HTML tags from the input and minify whitespace):

curl -s 'https://til.simonwillison.net/macos/imovie-slides-and-audio' | \
 strip-tags -m | llm -t steampunk -m 4

Output:

In a fantastical steampunk world, Simon Willison decided to merge an old MP3 recording with slides from the talk using iMovie. After exporting the slides as images and importing them into iMovie, he had to disable the default Ken Burns effect using the “Crop” tool. Then, Simon manually synchronized the audio by adjusting the duration of each image. Finally, he published the masterpiece to YouTube, with the whimsical magic of steampunk-infused illustrations leaving his viewers in awe.

System templates

When working with models that support system prompts (such as gpt-3.5-turbo and gpt-4) you can set a system prompt using a system: key like so:

system: Summarize this

If you specify only a system prompt you don’t need to use the $input variable - llm will use the user’s input as the whole of the regular prompt, which will then be processed using the instructions set in that system prompt.

You can combine system and regular prompts like so:

system: You speak like an excitable Victorian adventurer
prompt: 'Summarize this: $input'

Additional template variables

Templates that work against the user’s normal input (content that is either piped to the tool via standard input or passed as a command-line argument) use just the $input variable.

You can use additional named variables. These will then need to be provided using the -p/--param option when executing the template.

Here’s an example template called recipe, created using llm templates edit recipe:

prompt: |
 Suggest a recipe using ingredients: $ingredients

 It should be based on cuisine from this country: $country

This can be executed like so:

llm -t recipe -p ingredients 'sausages, milk' -p country Germany

My output started like this:

Recipe: German Sausage and Potato Soup

Ingredients:

	4 German sausages

	2 cups whole milk

This example combines input piped to the tool with additional parameters. Call this summarize:

system: Summarize this text in the voice of $voice

Then to run it:

curl -s 'https://til.simonwillison.net/macos/imovie-slides-and-audio' | \
 strip-tags -m | llm -t summarize -p voice GlaDOS

I got this:

My previous test subject seemed to have learned something new about iMovie. They exported keynote slides as individual images […] Quite impressive for a human.

Specifying default parameters

You can also specify default values for parameters, using a defaults: key.

system: Summarize this text in the voice of $voice
defaults:
 voice: GlaDOS

When running without -p it will choose the default:

curl -s 'https://til.simonwillison.net/macos/imovie-slides-and-audio' | \
 strip-tags -m | llm -t summarize

But you can override the defaults with -p:

curl -s 'https://til.simonwillison.net/macos/imovie-slides-and-audio' | \
 strip-tags -m | llm -t summarize -p voice Yoda

I got this:

Text, summarize in Yoda’s voice, I will: “Hmm, young padawan. Summary of this text, you seek. Hmmm. …

Setting a default model for a template

Templates executed using llm -t template-name will execute using the default model that the user has configured for the tool - or gpt-3.5-turbo if they have not configured their own default.

You can specify a new default model for a template using the model: key in the associated YAML. Here’s a template called roast:

model: gpt-4
system: roast the user at every possible opportunity, be succinct

Example:

llm -t roast 'How are you today?'

I’m doing great but with your boring questions, I must admit, I’ve seen more life in a cemetery.

 Logging to SQLite

Logging to SQLite

llm defaults to logging all prompts and responses to a SQLite database.

You can find the location of that database using the llm logs path command:

llm logs path

On my Mac that outputs:

/Users/simon/Library/Application Support/io.datasette.llm/logs.db

This will differ for other operating systems.

To avoid logging an individual prompt, pass --no-log or -n to the command:

llm 'Ten names for cheesecakes' -n

To turn logging by default off:

llm logs off

If you’ve turned off logging you can still log an individual prompt and response by adding --log:

llm 'Five ambitious names for a pet pterodactyl' --log

To turn logging by default back on again:

llm logs on

To see the status of the logs database, run this:

llm logs status

Example output:

Logging is ON for all prompts
Found log database at /Users/simon/Library/Application Support/io.datasette.llm/logs.db
Number of conversations logged: 33
Number of responses logged: 48
Database file size: 19.96MB

Viewing the logs

You can view the logs using the llm logs command:

llm logs

This will output the three most recent logged items in Markdown format

Add --json to get the log messages in JSON instead:

llm logs --json

Add -n 10 to see the ten most recent items:

llm logs -n 10

Or -n 0 to see everything that has ever been logged:

llm logs -n 0

You can truncate the display of the prompts and responses using the -t/--truncate option. This can help make the JSON output more readable:

llm logs -n 5 -t --json

Logs for a conversation

To view the logs for the most recent conversation you have had with a model, use -c:

llm logs -c

To see logs for a specific conversation based on its ID, use --cid ID or --conversation ID:

llm logs --cid 01h82n0q9crqtnzmf13gkyxawg

Searching the logs

You can search the logs for a search term in the prompt or the response columns.

llm logs -q 'cheesecake'

The most relevant terms will be shown at the bottom of the output.

Filtering by model

You can filter to logs just for a specific model (or model alias) using -m/--model:

llm logs -m chatgpt

Browsing logs using Datasette

You can also use Datasette [https://datasette.io/] to browse your logs like this:

datasette "$(llm logs path)"

SQL schema

Here’s the SQL schema used by the logs.db database:

CREATE TABLE [conversations] (
 [id] TEXT PRIMARY KEY,
 [name] TEXT,
 [model] TEXT
);
CREATE TABLE [responses] (
 [id] TEXT PRIMARY KEY,
 [model] TEXT,
 [prompt] TEXT,
 [system] TEXT,
 [prompt_json] TEXT,
 [options_json] TEXT,
 [response] TEXT,
 [response_json] TEXT,
 [conversation_id] TEXT REFERENCES [conversations]([id]),
 [duration_ms] INTEGER,
 [datetime_utc] TEXT
);
CREATE VIRTUAL TABLE [responses_fts] USING FTS5 (
 [prompt],
 [response],
 content=[responses]
);

responses_fts configures SQLite full-text search [https://www.sqlite.org/fts5.html] against the prompt and response columns in the responses table.

 Related tools

Related tools

The following tools are designed to be used with LLM:

strip-tags

strip-tags [https://github.com/simonw/strip-tags] is a command for stripping tags from HTML. This is useful when working with LLMs because HTML tags can use up a lot of your token budget.

Here’s how to summarize the front page of the New York Times, by both stripping tags and filtering to just the elements with class="story-wrapper":

curl -s https://www.nytimes.com/ \
 | strip-tags .story-wrapper \
 | llm -s 'summarize the news'

llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs [https://simonwillison.net/2023/May/18/cli-tools-for-llms/] describes ways to use strip-tags in more detail.

ttok

ttok [https://github.com/simonw/ttok] is a command-line tool for counting OpenAI tokens. You can use it to check if input is likely to fit in the token limit for GPT 3.5 or GPT4:

cat my-file.txt | ttok

125

It can also truncate input down to a desired number of tokens:

ttok This is too many tokens -t 3

This is too

This is useful for truncating a large document down to a size where it can be processed by an LLM.

Symbex

Symbex [https://github.com/simonw/symbex] is a tool for searching for symbols in Python codebases. It’s useful for extracting just the code for a specific problem and then piping that into LLM for explanation, refactoring or other tasks.

Here’s how to use it to find all functions that match test*csv* and use those to guess what the software under test does:

symbex 'test*csv*' | \
 llm --system 'based on these tests guess what this tool does'

It can also be used to export symbols in a format that can be piped to llm embed-multi in order to create embeddings:

symbex '*' '*:*' --nl | \
 llm embed-multi symbols - \
 --format nl --database embeddings.db --store

For more examples see Symbex: search Python code for functions and classes, then pipe them into a LLM [https://simonwillison.net/2023/Jun/18/symbex/].

 CLI reference

CLI reference

This page lists the --help output for all of the llm commands.

 Contributing

Contributing

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd llm
python -m venv venv
source venv/bin/activate

Or if you are using pipenv:

pipenv shell

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest

Debugging tricks

The default OpenAI plugin has a debugging mechanism for showing the exact requests and responses that were sent to the OpenAI API.

Set the LLM_OPENAI_SHOW_RESPONSES environment variable like this:

LLM_OPENAI_SHOW_RESPONSES=1 llm -m chatgpt 'three word slogan for an an otter-run bakery'

This will output details of the API requests and responses to the console.

Use --no-stream to see a more readable version of the body that avoids streaming the response:

LLM_OPENAI_SHOW_RESPONSES=1 llm -m chatgpt --no-stream \
 'three word slogan for an an otter-run bakery'

Documentation

Documentation for this project uses MyST [https://myst-parser.readthedocs.io/] - it is written in Markdown and rendered using Sphinx.

To build the documentation locally, run the following:

cd docs
pip install -r requirements.txt
make livehtml

This will start a live preview server, using sphinx-autobuild [https://pypi.org/project/sphinx-autobuild/].

The CLI --help examples in the documentation are managed using Cog [https://github.com/nedbat/cog]. Update those files like this:

just cog

You’ll need Just [https://github.com/casey/just] installed to run this command.

Release process

To release a new version:

	Update docs/changelog.md with the new changes.

	Update the version number in setup.py

	Create a GitHub release [https://github.com/simonw/llm/releases/new] for the new version.

	Wait for the package to push to PyPI and then…

	Run the regenerate.yaml [https://github.com/simonw/homebrew-llm/actions/workflows/regenerate.yaml] workflow to update the Homebrew tap to the latest version.

 Changelog

Changelog

0.13.1 (2024-01-26)

	Fix for No module named 'readline' error on Windows. #407 [https://github.com/simonw/llm/issues/407]

0.13 (2024-01-26)

See also LLM 0.13: The annotated release notes [https://simonwillison.net/2024/Jan/26/llm/].

	Added support for new OpenAI embedding models: 3-small and 3-large and three variants of those with different dimension sizes,
3-small-512, 3-large-256 and 3-large-1024. See OpenAI embedding models for details. #394 [https://github.com/simonw/llm/issues/394]

	The default gpt-4-turbo model alias now points to gpt-4-turbo-preview, which uses the most recent OpenAI GPT-4 turbo model (currently gpt-4-0125-preview). #396 [https://github.com/simonw/llm/issues/396]

	New OpenAI model aliases gpt-4-1106-preview and gpt-4-0125-preview.

	OpenAI models now support a -o json_object 1 option which will cause their output to be returned as a valid JSON object. #373 [https://github.com/simonw/llm/issues/373]

	New plugins since the last release include llm-mistral [https://github.com/simonw/llm-mistral], llm-gemini [https://github.com/simonw/llm-gemini], llm-ollama [https://github.com/taketwo/llm-ollama] and llm-bedrock-meta [https://github.com/flabat/llm-bedrock-meta].

	The keys.json file for storing API keys is now created with 600 file permissions. #351 [https://github.com/simonw/llm/issues/351]

	Documented a pattern for installing plugins that depend on PyTorch using the Homebrew version of LLM, despite Homebrew using Python 3.12 when PyTorch have not yet released a stable package for that Python version. #397 [https://github.com/simonw/llm/issues/397]

	Underlying OpenAI Python library has been upgraded to >1.0. It is possible this could cause compatibility issues with LLM plugins that also depend on that library. #325 [https://github.com/simonw/llm/issues/325]

	Arrow keys now work inside the llm chat command. #376 [https://github.com/simonw/llm/issues/376]

	LLM_OPENAI_SHOW_RESPONSES=1 environment variable now outputs much more detailed information about the HTTP request and response made to OpenAI (and OpenAI-compatible) APIs. #404 [https://github.com/simonw/llm/issues/404]

	Dropped support for Python 3.7.

0.12 (2023-11-06)

	Support for the new GPT-4 Turbo model [https://openai.com/blog/new-models-and-developer-products-announced-at-devday] from OpenAI. Try it using llm chat -m gpt-4-turbo or llm chat -m 4t. #323 [https://github.com/simonw/llm/issues/323]

	New -o seed 1 option for OpenAI models which sets a seed that can attempt to evaluate the prompt deterministically. #324 [https://github.com/simonw/llm/issues/324]

0.11.2 (2023-11-06)

	Pin to version of OpenAI Python library prior to 1.0 to avoid breaking. #327 [https://github.com/simonw/llm/issues/327]

0.11.1 (2023-10-31)

	Fixed a bug where llm embed -c "text" did not correctly pick up the configured default embedding model. #317 [https://github.com/simonw/llm/issues/317]

	New plugins: llm-python [https://github.com/simonw/llm-python], llm-bedrock-anthropic [https://github.com/sblakey/llm-bedrock-anthropic] and llm-embed-jina [https://github.com/simonw/llm-embed-jina] (described in Execute Jina embeddings with a CLI using llm-embed-jina [https://simonwillison.net/2023/Oct/26/llm-embed-jina/]).

	llm-gpt4all [https://github.com/simonw/llm-gpt4all] now uses the new GGUF model format. simonw/llm-gpt4all#16 [https://github.com/simonw/llm-gpt4all/issues/16]

0.11 (2023-09-18)

LLM now supports the new OpenAI gpt-3.5-turbo-instruct model, and OpenAI completion (as opposed to chat completion) models in general. #284 [https://github.com/simonw/llm/issues/284]

llm -m gpt-3.5-turbo-instruct 'Reasons to tame a wild beaver:'

OpenAI completion models like this support a -o logprobs 3 option, which accepts a number between 1 and 5 and will include the log probabilities (for each produced token, what were the top 3 options considered by the model) in the logged response.

llm -m gpt-3.5-turbo-instruct 'Say hello succinctly' -o logprobs 3

You can then view the logprobs that were recorded in the SQLite logs database like this:

sqlite-utils "$(llm logs path)" \
 'select * from responses order by id desc limit 1' | \
 jq '.[0].response_json' -r | jq

Truncated output looks like this:

 [
 {
 "text": "Hi",
 "top_logprobs": [
 {
 "Hi": -0.13706253,
 "Hello": -2.3714375,
 "Hey": -3.3714373
 }
]
 },
 {
 "text": " there",
 "top_logprobs": [
 {
 " there": -0.96057636,
 "!\"": -0.5855763,
 ".\"": -3.2574513
 }
]
 }
]

Also in this release:

	The llm.user_dir() function, used by plugins, now ensures the directory exists before returning it. #275 [https://github.com/simonw/llm/issues/275]

	New LLM_OPENAI_SHOW_RESPONSES=1 environment variable for displaying the full HTTP response returned by OpenAI compatible APIs. #286 [https://github.com/simonw/llm/issues/286]

	The llm embed-multi command now has a --batch-size X option for setting the batch size to use when processing embeddings - useful if you have limited memory available. #273 [https://github.com/simonw/llm/issues/273]

	The collection.embed_multi() method also now accepts an optional batch_size=int argument.

	Fixed two bugs with llm embed-multi --files relating to handling of directories. Thanks, ealvar3z [https://github.com/ealvar3z]. #274 [https://github.com/simonw/llm/issues/274], #280 [https://github.com/simonw/llm/issues/280]

0.10 (2023-09-12)

The two major features in this release are the llm chat command and support for embedding binary data.

See Build an image search engine with llm-clip, chat with models with llm chat [https://simonwillison.net/2023/Sep/12/llm-clip-and-chat/] for more background on these features.

llm chat

The new llm chat command starts an ongoing chat conversation with a model in your terminal. It works with all models supported by LLM and its plugins, including locally installed models such as Llama 2. #231 [https://github.com/simonw/llm/issues/231]

This offers a big performance boost for local models, since they don’t need to be freshly loaded into memory for each prompt.

Here’s an example chat with Llama 2 13B, provided by the llm-mlc [https://github.com/simonw/llm-mlc] plugin.

llm chat -m mlc-chat-Llama-2-13b-chat-hf-q4f16_1

This starts a chat session:

Type 'exit' or 'quit' to exit
Type '!multi' to enter multiple lines, then '!end' to finish
> Who are you?
Hello! I'm just an AI, here to assist you with any questions you may have.
My name is LLaMA, and I'm a large language model trained to provide helpful
and informative responses to a wide range of questions and topics. I'm here
to help you find the information you need, while ensuring a safe and
respectful conversation. Please feel free to ask me anything, and I'll do my
best to provide a helpful and accurate response.
> Tell me a joke about otters
Sure, here's a joke about otters:

Why did the otter go to the party?

Because he heard it was a "whale" of a time!

(Get it? Whale, like a big sea mammal, but also a "wild" or "fun" time.
Otters are known for their playful and social nature, so it's a lighthearted
and silly joke.)

I hope that brought a smile to your face! Do you have any other questions or
topics you'd like to discuss?
> exit

Chat sessions are logged to SQLite - use llm logs to view them. They can accept system prompts, templates and model options - consult the chat documentation for details.

Binary embedding support

LLM’s embeddings feature has been expanded to provide support for embedding binary data, in addition to text. #254 [https://github.com/simonw/llm/pull/254]

This enables models like CLIP [https://openai.com/research/clip], supported by the new llm-clip [https://github.com/simonw/llm-clip] plugin.

CLIP is a multi-modal embedding model which can embed images and text into the same vector space. This means you can use it to create an embedding index of photos, and then search for the embedding vector for “a happy dog” and get back images that are semantically closest to that string.

To create embeddings for every JPEG in a directory stored in a photos collection, run:

llm install llm-clip
llm embed-multi photos --files photos/ '*.jpg' --binary -m clip

Now you can search for photos of racoons using:

llm similar photos -c 'raccoon'

This spits out a list of images, ranked by how similar they are to the string “raccoon”:

{"id": "IMG_4801.jpeg", "score": 0.28125139257127457, "content": null, "metadata": null}
{"id": "IMG_4656.jpeg", "score": 0.26626441704164294, "content": null, "metadata": null}
{"id": "IMG_2944.jpeg", "score": 0.2647445926996852, "content": null, "metadata": null}
...

Also in this release

	The LLM_LOAD_PLUGINS environment variable can be used to control which plugins are loaded when llm starts running. #256 [https://github.com/simonw/llm/issues/256]

	The llm plugins --all option includes builtin plugins in the list of plugins. #259 [https://github.com/simonw/llm/issues/259]

	The llm embed-db family of commands has been renamed to llm collections. #229 [https://github.com/simonw/llm/issues/229]

	llm embed-multi --files now has an --encoding option and defaults to falling back to latin-1 if a file cannot be processed as utf-8. #225 [https://github.com/simonw/llm/issues/225]

0.10a1 (2023-09-11)

	Support for embedding binary data. #254 [https://github.com/simonw/llm/pull/254]

	llm chat now works for models with API keys. #247 [https://github.com/simonw/llm/issues/247]

	llm chat -o for passing options to a model. #244 [https://github.com/simonw/llm/issues/244]

	llm chat --no-stream option. #248 [https://github.com/simonw/llm/issues/248]

	LLM_LOAD_PLUGINS environment variable. #256 [https://github.com/simonw/llm/issues/256]

	llm plugins --all option for including builtin plugins. #259 [https://github.com/simonw/llm/issues/259]

	llm embed-db has been renamed to llm collections. #229 [https://github.com/simonw/llm/issues/229]

	Fixed bug where llm embed -c option was treated as a filepath, not a string. Thanks, mhalle [https://github.com/mhalle]. #263 [https://github.com/simonw/llm/pull/263]

0.10a0 (2023-09-04)

	New llm chat command for starting an interactive terminal chat with a model. #231 [https://github.com/simonw/llm/issues/231]

	llm embed-multi --files now has an --encoding option and defaults to falling back to latin-1 if a file cannot be processed as utf-8. #225 [https://github.com/simonw/llm/issues/225]

0.9 (2023-09-03)

The big new feature in this release is support for embeddings. See LLM now provides tools for working with embeddings [https://simonwillison.net/2023/Sep/4/llm-embeddings/] for additional details.

Embedding models take a piece of text - a word, sentence, paragraph or even a whole article, and convert that into an array of floating point numbers. #185 [https://github.com/simonw/llm/issues/185]

This embedding vector can be thought of as representing a position in many-dimensional-space, where the distance between two vectors represents how semantically similar they are to each other within the content of a language model.

Embeddings can be used to find related documents, and also to implement semantic search - where a user can search for a phrase and get back results that are semantically similar to that phrase even if they do not share any exact keywords.

LLM now provides both CLI and Python APIs for working with embeddings. Embedding models are defined by plugins, so you can install additional models using the plugins mechanism.

The first two embedding models supported by LLM are:

	OpenAI’s ada-002 [https://platform.openai.com/docs/guides/embeddings] embedding model, available via an inexpensive API if you set an OpenAI key using llm keys set openai.

	The sentence-transformers [https://www.sbert.net/] family of models, available via the new llm-sentence-transformers [https://github.com/simonw/llm-sentence-transformers] plugin.

See Embedding with the CLI for detailed instructions on working with embeddings using LLM.

The new commands for working with embeddings are:

	llm embed - calculate embeddings for content and return them to the console or store them in a SQLite database.

	llm embed-multi - run bulk embeddings for multiple strings, using input from a CSV, TSV or JSON file, data from a SQLite database or data found by scanning the filesystem. #215 [https://github.com/simonw/llm/issues/215]

	llm similar - run similarity searches against your stored embeddings - starting with a search phrase or finding content related to a previously stored vector. #190 [https://github.com/simonw/llm/issues/190]

	llm embed-models - list available embedding models.

	llm embed-db - commands for inspecting and working with the default embeddings SQLite database.

There’s also a new llm.Collection class for creating and searching collections of embedding from Python code, and a llm.get_embedding_model() interface for embedding strings directly. #191 [https://github.com/simonw/llm/issues/191]

0.8.1 (2023-08-31)

	Fixed bug where first prompt would show an error if the io.datasette.llm directory had not yet been created. #193 [https://github.com/simonw/llm/issues/193]

	Updated documentation to recommend a different llm-gpt4all model since the one we were using is no longer available. #195 [https://github.com/simonw/llm/issues/195]

0.8 (2023-08-20)

	The output format for llm logs has changed. Previously it was JSON - it’s now a much more readable Markdown format suitable for pasting into other documents. #160 [https://github.com/simonw/llm/issues/160]

	The new llm logs --json option can be used to get the old JSON format.

	Pass llm logs --conversation ID or --cid ID to see the full logs for a specific conversation.

	You can now combine piped input and a prompt in a single command: cat script.py | llm 'explain this code'. This works even for models that do not support system prompts. #153 [https://github.com/simonw/llm/issues/153]

	Additional OpenAI-compatible models can now be configured with custom HTTP headers. This enables platforms such as openrouter.ai [https://openrouter.ai/] to be used with LLM, which can provide Claude access even without an Anthropic API key.

	Keys set in keys.json are now used in preference to environment variables. #158 [https://github.com/simonw/llm/issues/158]

	The documentation now includes a plugin directory listing all available plugins for LLM. #173 [https://github.com/simonw/llm/issues/173]

	New related tools section in the documentation describing ttok, strip-tags and symbex. #111 [https://github.com/simonw/llm/issues/111]

	The llm models, llm aliases and llm templates commands now default to running the same command as llm models list and llm aliases list and llm templates list. #167 [https://github.com/simonw/llm/issues/167]

	New llm keys (aka llm keys list) command for listing the names of all configured keys. #174 [https://github.com/simonw/llm/issues/174]

	Two new Python API functions, llm.set_alias(alias, model_id) and llm.remove_alias(alias) can be used to configure aliases from within Python code. #154 [https://github.com/simonw/llm/pull/154]

	LLM is now compatible with both Pydantic 1 and Pydantic 2. This means you can install llm as a Python dependency in a project that depends on Pydantic 1 without running into dependency conflicts. Thanks, Chris Mungall [https://github.com/cmungall]. #147 [https://github.com/simonw/llm/pull/147]

	llm.get_model(model_id) is now documented as raising llm.UnknownModelError if the requested model does not exist. #155 [https://github.com/simonw/llm/issues/155]

0.7.1 (2023-08-19)

	Fixed a bug where some users would see an AlterError: No such column: log.id error when attempting to use this tool, after upgrading to the latest sqlite-utils 3.35 release [https://sqlite-utils.datasette.io/en/stable/changelog.html#v3-35]. #162 [https://github.com/simonw/llm/issues/162]

0.7 (2023-08-12)

The new Model aliases commands can be used to configure additional aliases for models, for example:

llm aliases set turbo gpt-3.5-turbo-16k

Now you can run the 16,000 token gpt-3.5-turbo-16k model like this:

llm -m turbo 'An epic Greek-style saga about a cheesecake that builds a SQL database from scratch'

Use llm aliases list to see a list of aliases and llm aliases remove turbo to remove one again. #151 [https://github.com/simonw/llm/issues/151]

Notable new plugins

	llm-mlc [https://github.com/simonw/llm-mlc] can run local models released by the MLC project [https://mlc.ai/mlc-llm/], including models that can take advantage of the GPU on Apple Silicon M1/M2 devices.

	llm-llama-cpp [https://github.com/simonw/llm-llama-cpp] uses llama.cpp [https://github.com/ggerganov/llama.cpp] to run models published in the GGML format. See Run Llama 2 on your own Mac using LLM and Homebrew [https://simonwillison.net/2023/Aug/1/llama-2-mac/] for more details.

Also in this release

	OpenAI models now have min and max validation on their floating point options. Thanks, Pavel Král. #115 [https://github.com/simonw/llm/issues/115]

	Fix for bug where llm templates list raised an error if a template had an empty prompt. Thanks, Sherwin Daganato. #132 [https://github.com/simonw/llm/pull/132]

	Fixed bug in llm install --editable option which prevented installation of .[test]. #136 [https://github.com/simonw/llm/issues/136]

	llm install --no-cache-dir and --force-reinstall options. #146 [https://github.com/simonw/llm/issues/146]

0.6.1 (2023-07-24)

	LLM can now be installed directly from Homebrew core: brew install llm. #124 [https://github.com/simonw/llm/issues/124]

	Python API documentation now covers System prompts.

	Fixed incorrect example in the Prompt templates documentation. Thanks, Jorge Cabello. #125 [https://github.com/simonw/llm/pull/125]

0.6 (2023-07-18)

	Models hosted on Replicate [https://replicate.com/] can now be accessed using the llm-replicate [https://github.com/simonw/llm-replicate] plugin, including the new Llama 2 model from Meta AI. More details here: Accessing Llama 2 from the command-line with the llm-replicate plugin [https://simonwillison.net/2023/Jul/18/accessing-llama-2/].

	Model providers that expose an API that is compatible with the OpenAPI API format, including self-hosted model servers such as LocalAI [https://github.com/go-skynet/LocalAI], can now be accessed using additional configuration for the default OpenAI plugin. #106 [https://github.com/simonw/llm/issues/106]

	OpenAI models that are not yet supported by LLM can also be configured using the new extra-openai-models.yaml configuration file. #107 [https://github.com/simonw/llm/issues/107]

	The llm logs command now accepts a -m model_id option to filter logs to a specific model. Aliases can be used here in addition to model IDs. #108 [https://github.com/simonw/llm/issues/108]

	Logs now have a SQLite full-text search index against their prompts and responses, and the llm logs -q SEARCH option can be used to return logs that match a search term. #109 [https://github.com/simonw/llm/issues/109]

0.5 (2023-07-12)

LLM now supports additional language models, thanks to a new plugins mechanism for installing additional models.

Plugins are available for 19 models in addition to the default OpenAI ones:

	llm-gpt4all [https://github.com/simonw/llm-gpt4all] adds support for 17 models that can download and run on your own device, including Vicuna, Falcon and wizardLM.

	llm-mpt30b [https://github.com/simonw/llm-mpt30b] adds support for the MPT-30B model, a 19GB download.

	llm-palm [https://github.com/simonw/llm-palm] adds support for Google’s PaLM 2 via the Google API.

A comprehensive tutorial, writing a plugin to support a new model describes how to add new models by building plugins in detail.

New features

	Python API documentation for using LLM models, including models from plugins, directly from Python. #75 [https://github.com/simonw/llm/issues/75]

	Messages are now logged to the database by default - no need to run the llm init-db command any more, which has been removed. Instead, you can toggle this behavior off using llm logs off or turn it on again using llm logs on. The llm logs status command shows the current status of the log database. If logging is turned off, passing --log to the llm prompt command will cause that prompt to be logged anyway. #98 [https://github.com/simonw/llm/issues/98]

	New database schema for logged messages, with conversations and responses tables. If you have previously used the old logs table it will continue to exist but will no longer be written to. #91 [https://github.com/simonw/llm/issues/91]

	New -o/--option name value syntax for setting options for models, such as temperature. Available options differ for different models. #63 [https://github.com/simonw/llm/issues/63]

	llm models list --options command for viewing all available model options. #82 [https://github.com/simonw/llm/issues/82]

	llm "prompt" --save template option for saving a prompt directly to a template. #55 [https://github.com/simonw/llm/issues/55]

	Prompt templates can now specify default values for parameters. Thanks, Chris Mungall. #57 [https://github.com/simonw/llm/pull/57]

	llm openai models command to list all available OpenAI models from their API. #70 [https://github.com/simonw/llm/issues/70]

	llm models default MODEL_ID to set a different model as the default to be used when llm is run without the -m/--model option. #31 [https://github.com/simonw/llm/issues/31]

Smaller improvements

	llm -s is now a shortcut for llm --system. #69 [https://github.com/simonw/llm/issues/69]

	llm -m 4-32k alias for gpt-4-32k.

	llm install -e directory command for installing a plugin from a local directory.

	The LLM_USER_PATH environment variable now controls the location of the directory in which LLM stores its data. This replaces the old LLM_KEYS_PATH and LLM_LOG_PATH and LLM_TEMPLATES_PATH variables. #76 [https://github.com/simonw/llm/issues/76]

	Documentation covering Utility functions for plugins.

	Documentation site now uses Plausible for analytics. #79 [https://github.com/simonw/llm/issues/79]

0.4.1 (2023-06-17)

	LLM can now be installed using Homebrew: brew install simonw/llm/llm. #50 [https://github.com/simonw/llm/issues/50]

	llm is now styled LLM in the documentation. #45 [https://github.com/simonw/llm/issues/45]

	Examples in documentation now include a copy button. #43 [https://github.com/simonw/llm/issues/43]

	llm templates command no longer has its display disrupted by newlines. #42 [https://github.com/simonw/llm/issues/42]

	llm templates command now includes system prompt, if set. #44 [https://github.com/simonw/llm/issues/44]

0.4 (2023-06-17)

This release includes some backwards-incompatible changes:

	The -4 option for GPT-4 is now -m 4.

	The --code option has been removed.

	The -s option has been removed as streaming is now the default. Use --no-stream to opt out of streaming.

Prompt templates

Prompt templates is a new feature that allows prompts to be saved as templates and re-used with different variables.

Templates can be created using the llm templates edit command:

llm templates edit summarize

Templates are YAML - the following template defines summarization using a system prompt:

system: Summarize this text

The template can then be executed like this:

cat myfile.txt | llm -t summarize

Templates can include both system prompts, regular prompts and indicate the model they should use. They can reference variables such as $input for content piped to the tool, or other variables that are passed using the new -p/--param option.

This example adds a voice parameter:

system: Summarize this text in the voice of $voice

Then to run it (via strip-tags [https://github.com/simonw/strip-tags] to remove HTML tags from the input):

curl -s 'https://til.simonwillison.net/macos/imovie-slides-and-audio' | \
 strip-tags -m | llm -t summarize -p voice GlaDOS

Example output:

My previous test subject seemed to have learned something new about iMovie. They exported keynote slides as individual images […] Quite impressive for a human.

The Prompt templates documentation provides more detailed examples.

Continue previous chat

You can now use llm to continue a previous conversation with the OpenAI chat models (gpt-3.5-turbo and gpt-4). This will include your previous prompts and responses in the prompt sent to the API, allowing the model to continue within the same context.

Use the new -c/--continue option to continue from the previous message thread:

llm "Pretend to be a witty gerbil, say hi briefly"

Greetings, dear human! I am a clever gerbil, ready to entertain you with my quick wit and endless energy.

llm "What do you think of snacks?" -c

Oh, how I adore snacks, dear human! Crunchy carrot sticks, sweet apple slices, and chewy yogurt drops are some of my favorite treats. I could nibble on them all day long!

The -c option will continue from the most recent logged message.

To continue a different chat, pass an integer ID to the --chat option. This should be the ID of a previously logged message. You can find these IDs using the llm logs command.

Thanks Amjith Ramanujam [https://github.com/amjith] for contributing to this feature. #6 [https://github.com/simonw/llm/issues/6]

New mechanism for storing API keys

API keys for language models such as those by OpenAI can now be saved using the new llm keys family of commands.

To set the default key to be used for the OpenAI APIs, run this:

llm keys set openai

Then paste in your API key.

Keys can also be passed using the new --key command line option - this can be a full key or the alias of a key that has been previously stored.

See API key management for more. #13 [https://github.com/simonw/llm/issues/13]

New location for the logs.db database

The logs.db database that stores a history of executed prompts no longer lives at ~/.llm/log.db - it can now be found in a location that better fits the host operating system, which can be seen using:

llm logs path

On macOS this is ~/Library/Application Support/io.datasette.llm/logs.db.

To open that database using Datasette, run this:

datasette "$(llm logs path)"

You can upgrade your existing installation by copying your database to the new location like this:

cp ~/.llm/log.db "$(llm logs path)"
rm -rf ~/.llm # To tidy up the now obsolete directory

The database schema has changed, and will be updated automatically the first time you run the command.

That schema is included in the documentation [https://llm.datasette.io/en/stable/logging.html#sql-schema]. #35 [https://github.com/simonw/llm/issues/35]

Other changes

	New llm logs --truncate option (shortcut -t) which truncates the displayed prompts to make the log output easier to read. #16 [https://github.com/simonw/llm/issues/16]

	Documentation now spans multiple pages and lives at https://llm.datasette.io/ #21 [https://github.com/simonw/llm/issues/21]

	Default llm chatgpt command has been renamed to llm prompt. #17 [https://github.com/simonw/llm/issues/17]

	Removed --code option in favour of new prompt templates mechanism. #24 [https://github.com/simonw/llm/issues/24]

	Responses are now streamed by default, if the model supports streaming. The -s/--stream option has been removed. A new --no-stream option can be used to opt-out of streaming. #25 [https://github.com/simonw/llm/issues/25]

	The -4/--gpt4 option has been removed in favour of -m 4 or -m gpt4, using a new mechanism that allows models to have additional short names.

	The new gpt-3.5-turbo-16k model with a 16,000 token context length can now also be accessed using -m chatgpt-16k or -m 3.5-16k. Thanks, Benjamin Kirkbride. #37 [https://github.com/simonw/llm/issues/37]

	Improved display of error messages from OpenAI. #15 [https://github.com/simonw/llm/issues/15]

0.3 (2023-05-17)

	llm logs command for browsing logs of previously executed completions. #3 [https://github.com/simonw/llm/issues/3]

	llm "Python code to output factorial 10" --code option which sets a system prompt designed to encourage code to be output without any additional explanatory text. #5 [https://github.com/simonw/llm/issues/5]

	Tool can now accept a prompt piped directly to standard input. #11 [https://github.com/simonw/llm/issues/11]

0.2 (2023-04-01)

	If a SQLite database exists in ~/.llm/log.db all prompts and responses are logged to that file. The llm init-db command can be used to create this file. #2 [https://github.com/simonw/llm/issues/2]

0.1 (2023-04-01)

	Initial prototype release. #1 [https://github.com/simonw/llm/issues/1]

 Index

Index

nav.xhtml

 Table of Contents

 		
 LLM

 		
 Setup

 		
 Installation

 		
 Upgrading to the latest version

 		
 A note about Homebrew and PyTorch

 		
 Installing plugins

 		
 API key management

 		
 Saving and using stored keys

 		
 Passing keys using the –key option

 		
 Keys in environment variables

 		
 Configuration

 		
 Setting a custom default model

 		
 Setting a custom directory location

 		
 Turning SQLite logging on and off

 		
 Usage

 		
 Executing a prompt

 		
 Completion prompts

 		
 Continuing a conversation

 		
 Using with a shell

 		
 System prompts

 		
 Starting an interactive chat

 		
 Listing available models

 		
 OpenAI models

 		
 Configuration

 		
 OpenAI language models

 		
 OpenAI embedding models

 		
 Adding more OpenAI models

 		
 Other models

 		
 Installing and using a local model

 		
 OpenAI-compatible models

 		
 Extra HTTP headers

 		
 Embeddings

 		
 Embedding with the CLI

 		
 llm embed

 		
 llm embed-multi

 		
 llm similar

 		
 llm embed-models

 		
 llm collections list

 		
 llm collections delete

 		
 Using embeddings from Python

 		
 Working with collections

 		
 Retrieving similar items

 		
 SQL schema

 		
 Writing plugins to add new embedding models

 		
 Embedding binary content

 		
 Embedding storage format

 		
 Plugins

 		
 Installing plugins

 		
 Listing installed plugins

 		
 Running with a subset of plugins

 		
 Plugin directory

 		
 Local models

 		
 Remote APIs

 		
 Embedding models

 		
 Extra commands

 		
 Just for fun

 		
 Plugin hooks

 		
 register_commands(cli)

 		
 register_models(register)

 		
 Writing a plugin to support a new model

 		
 The initial structure of the plugin

 		
 Installing your plugin to try it out

 		
 Building the Markov chain

 		
 Executing the Markov chain

 		
 Adding that to the plugin

 		
 Understanding execute()

 		
 Prompts and responses are logged to the database

 		
 Adding options

 		
 Distributing your plugin

 		
 GitHub repositories

 		
 Publishing plugins to PyPI

 		
 Adding metadata

 		
 What to do if it breaks

 		
 Utility functions for plugins

 		
 llm.user_dir()

 		
 llm.ModelError

 		
 Response.fake()

 		
 Model aliases

 		
 Listing aliases

 		
 Adding a new alias

 		
 Removing an alias

 		
 Viewing the aliases file

 		
 Python API

 		
 Basic prompt execution

 		
 System prompts

 		
 Model options

 		
 Models from plugins

 		
 Streaming responses

 		
 Conversations

 		
 Other functions

 		
 set_alias(alias, model_id)

 		
 remove_alias(alias)

 		
 Prompt templates

 		
 Getting started

 		
 Using a template

 		
 Listing available templates

 		
 Templates as YAML files

 		
 System templates

 		
 Additional template variables

 		
 Specifying default parameters

 		
 Setting a default model for a template

 		
 Logging to SQLite

 		
 Viewing the logs

 		
 Logs for a conversation

 		
 Searching the logs

 		
 Filtering by model

 		
 Browsing logs using Datasette

 		
 SQL schema

 		
 Related tools

 		
 strip-tags

 		
 ttok

 		
 Symbex

 		
 CLI reference

 		
 llm –help

 		
 llm prompt –help

 		
 llm chat –help

 		
 llm keys –help

 		
 llm logs –help

 		
 llm models –help

 		
 llm templates –help

 		
 llm aliases –help

 		
 llm plugins –help

 		
 llm install –help

 		
 llm uninstall –help

 		
 llm embed –help

 		
 llm embed-multi –help

 		
 llm similar –help

 		
 llm embed-models –help

 		
 llm collections –help

 		
 llm openai –help

 		
 Contributing

 		
 Debugging tricks

 		
 Documentation

 		
 Release process

 		
 Changelog

 		
 0.13.1 (2024-01-26)

 		
 0.13 (2024-01-26)

 		
 0.12 (2023-11-06)

 		
 0.11.2 (2023-11-06)

 		
 0.11.1 (2023-10-31)

 		
 0.11 (2023-09-18)

 		
 0.10 (2023-09-12)

 		
 llm chat

 		
 Binary embedding support

 		
 Also in this release

 		
 0.10a1 (2023-09-11)

 		
 0.10a0 (2023-09-04)

 		
 0.9 (2023-09-03)

 		
 0.8.1 (2023-08-31)

 		
 0.8 (2023-08-20)

 		
 0.7.1 (2023-08-19)

 		
 0.7 (2023-08-12)

 		
 Notable new plugins

 		
 Also in this release

 		
 0.6.1 (2023-07-24)

 		
 0.6 (2023-07-18)

 		
 0.5 (2023-07-12)

 		
 New features

 		
 Smaller improvements

 		
 0.4.1 (2023-06-17)

 		
 0.4 (2023-06-17)

