Utility functions for plugins#
LLM provides some utility functions that may be useful to plugins.
llm.user_dir()#
LLM stores various pieces of logging and configuration data in a directory on the user’s machine.
On macOS this directory is ~/Library/Application Support/io.datasette.llm
, but this will differ on other operating systems.
The llm.user_dir()
function returns the path to this directory as a pathlib.Path
object, after creating that directory if it does not yet exist.
Plugins can use this to store their own data in a subdirectory of this directory.
import llm
user_dir = llm.user_dir()
plugin_dir = data_path = user_dir / "my-plugin"
plugin_dir.mkdir(exist_ok=True)
data_path = plugin_dir / "plugin-data.db"
llm.ModelError#
If your model encounters an error that should be reported to the user you can raise this exception. For example:
import llm
raise ModelError("MPT model not installed - try running 'llm mpt30b download'")
This will be caught by the CLI layer and displayed to the user as an error message.
Response.fake()#
When writing tests for a model it can be useful to generate fake response objects, for example in this test from llm-mpt30b:
def test_build_prompt_conversation():
model = llm.get_model("mpt")
conversation = model.conversation()
conversation.responses = [
llm.Response.fake(model, "prompt 1", "system 1", "response 1"),
llm.Response.fake(model, "prompt 2", None, "response 2"),
llm.Response.fake(model, "prompt 3", None, "response 3"),
]
lines = model.build_prompt(llm.Prompt("prompt 4", model), conversation)
assert lines == [
"<|im_start|>system\system 1<|im_end|>\n",
"<|im_start|>user\nprompt 1<|im_end|>\n",
"<|im_start|>assistant\nresponse 1<|im_end|>\n",
"<|im_start|>user\nprompt 2<|im_end|>\n",
"<|im_start|>assistant\nresponse 2<|im_end|>\n",
"<|im_start|>user\nprompt 3<|im_end|>\n",
"<|im_start|>assistant\nresponse 3<|im_end|>\n",
"<|im_start|>user\nprompt 4<|im_end|>\n",
"<|im_start|>assistant\n",
]
The signature of llm.Response.fake()
is:
def fake(cls, model: Model, prompt: str, system: str, response: str):